Skip to main content

Salinity Tolerance: Growth, Mineral Nutrients, and Roles of Organic Osmolytes, Case of Lygeum spartum L., A Review

  • Chapter
Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies

Abstract

Soil salinity is a major environmental problem that limits plant growth, productivity, and survival. Proper drainage and the application of high quality water can although solve the problem; however, these measures are very costly and cannot be applied in extensive agriculture. An alternative strategy for sustainable agriculture in saline marginal lands is to select plants that can tolerate salinity. The plant’s ability to tolerate salinity depends on multiple biochemical pathways that enable retention and/or acquisition of water, protect photosynthetic functions, and maintain homeostasis of ions. Lygeum spartum L. is a pioneer grass species, used for sand dune fixation, desalination, and rehabilitation of degraded arid lands. The plant tolerates abiotic constraints such as salinity and drought and is also used to provide standing feed browse for livestock. The present paper reviews L. spartum plant responses to salinity stress with emphasis on the biochemical and physiological mechanisms of salt tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdul Qados AMS (2011) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J Saudi Soc Agri Sci 10:7–15

    CAS  Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Ashraf M, Wahid S (2000) Time-course changes in organic metabolites and mineral nutrients in germinating maize seeds under salt (NaCl) stress. Seed Sci Technol 28:641–656

    Google Scholar 

  • Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic, San Diego

    Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  PubMed  Google Scholar 

  • Carvajal M, Martinez V, Alcaraz CF (1999) Physiological functions of water channels as affected by salinity in roots of paprika pepper. Physiol Plant 105:95–101

    Article  CAS  Google Scholar 

  • Cha-um S, Charoenpanich A, Roytrakul S, Kirdmanee C (2009) Sugar accumulation, photosynthesis and growth of two indica rice varieties in response to salt stress. Acta Physiol Plant 31:477–486

    Article  CAS  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  CAS  PubMed  Google Scholar 

  • Conesa HM, Robinson BH, Schulin R, Nowack B (2007) Growth of Lygeum spartum in acid mine tailings: response of plants developed from seedlings, rhizomes and at field conditions. Environ Pollut 145:700–707

    Article  CAS  PubMed  Google Scholar 

  • Dubey RS, Singh AK (1999) Salinity induces accumulation of soluble sugars and alters the activity of sugars metabolising enzymes in rice plants. Biol Plant 42:233–239

    Article  CAS  Google Scholar 

  • Epstein E (1998) How calcium enhances plant salt tolerance. Science 40:1906–1907

    Article  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Flooding tolerance in halophytes. New Phytol 179:964–974

    Article  PubMed  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Guerrier G (1988) Comparative phosphatase activity in four species during germination in NaCl media. J Plant Nutr 11:535–546

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Hartzendorf T, Rolletschek H (2001) Effects of NaCl-salinity on amino acid and carbohydrate contents of Phragmites australis. Aquat Bot 69:195–208

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90:301–313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaya C, Kirnak H, Higgs D, Saltali K (2002) Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Sci Hortic 93:65–74

    Article  CAS  Google Scholar 

  • Keutgen AJ, Pawelzik E (2008) Contribution of amino acids to strawberry fruit quality and their relevance as stress indicators under NaCl salinity. Food Chem 111:642–647

    Article  CAS  Google Scholar 

  • Khan MA, Duke NC (2001) Halophytes – a resource for the future. Wetl Ecol Manag 6:455–456

    Article  Google Scholar 

  • Khan MA, Gul B (2006) Halophyte seed germination. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Springer, Dordrecht, pp 11–30

    Chapter  Google Scholar 

  • Khan MA, Ahmed MZ, Hameed A (2006) Effect of sea salt and L-ascorbic acid on the seed germination of halophytes. J Arid Environ 67:535–540

    Article  Google Scholar 

  • López M, Tejera NA, Iribarne C, Lluch C, Herrera-Cervera JA (2008) Trehalose and trehalase in root nodules of Medicago truncatula and Phaseolus vulgaris in response to salt stress. Physiol Plant 134:575–582

    Article  PubMed  Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  • Martinez-Ballesta MC, Martinez V, Carvajal M (2003) Aquaporin functionality in relation to H+–ATPase activity in root cells of Capsicum annuum grown under salinity. Physiol Plant 117:413–420

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Ballesta MC, Silva C, Lopez-Berenguer C, Cabãnero FJ, Carvajal M (2006) Plant aquaporins: new perspectives on water and nutrient uptake in saline environment. Plant Biol 8:535–546

    Article  PubMed  Google Scholar 

  • Maurel C, Chrispeels MJ (2001) Aquaporins: a molecular entry into plant water relations. Plant Physiol 125:135–138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nedjimi B (2009) Salt tolerance strategies of Lygeum spartum L.: a new fodder crop for Algerian saline steppes. Flora 204:747–754

    Article  Google Scholar 

  • Nedjimi B (2011) Is salinity tolerance related to osmolytes accumulation in Lygeum spartum L. seedlings? J Saudi Soc Agri Sci 10:81–87

    CAS  Google Scholar 

  • Nedjimi B (2013) Effect of salinity and temperature on germination of Lygeum spartum L. Agric Res 2:340–345

    Article  CAS  Google Scholar 

  • Nedjimi B (2014) Effects of salinity on growth, membrane permeability and root hydraulic conductivity in three saltbush species. Biochem Syst Ecol 52:4–13

    Article  CAS  Google Scholar 

  • Nedjimi B, Daoud Y (2009a) Effects of calcium chloride on growth, membrane permeability and root hydraulic conductivity in two Atriplex species grown at high (sodium chloride) salinity. J Plant Nutr 32:1818–1830

    Article  CAS  Google Scholar 

  • Nedjimi B, Daoud Y (2009b) Ameliorative effect of CaCl2 on growth, membrane permeability and nutrient uptake in Atriplex halimus subsp. schweinfurthii grown at high (NaCl) salinity. Desalination 249:163–166

    Article  CAS  Google Scholar 

  • Nedjimi B, Daoud Y, Carvajal M, Martinez-Ballesta MC (2010) Improvement of the adaptation of Lygeum spartum L. to salinity under the presence of calcium. Commun Soil Sci Plant Anal 41:2301–2317

    Article  CAS  Google Scholar 

  • Nedjimi B, Guit B, Toumi M, Daoud Y (2013) Water status of Lygeum spartum L. seedlings subjected to salt stress. Bio Ressources 3:1–5

    Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Patel AD, Bhensdadia H, Pandey AN (2009) Effect of salinisation of soil on growth, water status and general nutrient accumulation in seedlings of Delonix regia (Fabaceae). Acta Ecol Sin 29:109–115

    Article  Google Scholar 

  • Probert RJ (1992) The role of temperature in germination ecophysiology. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities. CAB International, Wallingford, pp 327–348

    Google Scholar 

  • Promila K, Kumar S (2000) Vigna radiata seed germination under salinity. Biol Plant 43:423–426

    Article  CAS  Google Scholar 

  • Pugnaire FI, Haase P (1996) Comparative physiology and growth of two perennial tussock grass species in a semi-arid environment. Ann Bot 77:81–86

    Article  Google Scholar 

  • Ramani B, Reeck T, Debez A, Stelzer R, Huchzermeyer B, Schmidt A, Papenbrock J (2006) Aster tripolium L. and Sesuvium portulacastrum L.: two halophytes, two strategies to survive in saline habitats. Plant Physiol Biochem 44:395–408

    Article  CAS  PubMed  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620

    Article  Google Scholar 

  • Schäffner AR (1998) Aquaporin function structure and expression: are there more surprises to surface in water relations? Planta 204:131–139

    Article  PubMed  Google Scholar 

  • Shabala L, Cuin TA, Newman IA, Shabala S (2005) Salinity-induced ion flux patterns from the excised roots of Arabidopsis SOS mutants. Planta 222:1041–1050

    Article  CAS  PubMed  Google Scholar 

  • Shannon MC (1998) Adaptation of plants to salinity. Adv Agron 60:75–119

    Article  Google Scholar 

  • Suárez N (2011) Effects of short-and long-term salinity on leaf water relations, gas exchange, and growth in Ipomoea pes-caprae. Flora 206:267–275

    Article  Google Scholar 

  • Sudhir P, Murth SDS (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tlig T, Gorai M, Neffati M (2008) Germination responses of Diplotaxis harra to temperature and salinity. Flora 203:421–428

    Article  Google Scholar 

  • Tuna AL, Kaya C, Ashraf M, Altunlu H, Yokas I, Yagmur B (2007) The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ Exp Bot 59:173–178

    Article  CAS  Google Scholar 

  • Ungar IA (1995) Seed germination and seed-bank ecology of halophytes. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, New York, pp 599–629

    Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All researches were funded by MESRS (National Program of Research, Project No. 1/U7/7606 and CNEPRU Project code F–02820140009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouzid Nedjimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Nedjimi, B. (2016). Salinity Tolerance: Growth, Mineral Nutrients, and Roles of Organic Osmolytes, Case of Lygeum spartum L., A Review. In: Iqbal, N., Nazar, R., A. Khan, N. (eds) Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2616-1_3

Download citation

Publish with us

Policies and ethics