Skip to main content

Abstract

For an effective disease management, the correct diagnosis of a disease based on the identification of its causal agent is very essential. The diagnosis of some diseases on the basis of symptoms can be made to a satisfactory level, but the identification of the causal agent is necessary for confirmation. For the diagnosis of a plant disease, a comprehensive host list that covers a known disease, its typical symptoms and its known potential pathogens for a specific host is required. The compendia of different crop diseases published by American Phytopathological Society are very valuable publications for this purpose. A list of plant diseases found on the website (http://www.apsnet.org/online/common/top.asp) of American Phytopathological Society is also a source of valuable information. Westcott’s Plant Disease Handbook is also useful because specific symptoms associated with each disease are given (Horst, 2001). The photographs of symptoms, especially the coloured ones, also aid in the identification of plant diseases. A list of known pathogens for a given crop greatly reduces the choices to one or two suspected genera for the given symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Abbreviations of bacterial genera given here in their respective bracts, i.e., Agrobacterium (Ag.) Acidovorax (Ac.), Burkholderia (B.), Clavibacter (C.), Erwinia (E.), Pantoea (Pa.), Pectobacterium (Pe.), Pseudomonas (Ps.), Ralstonia (R.), Streptomyces (S.) and Xanthomonas (X.) are used in this publication.

References

  • Alvarez AM (2001) Differentiation of bacterial populations in seed extracts by flow cytometry. In: De Boer SH (ed) Plant pathogenic bacteria. Kluwer, Dordrecht, pp 393–396

    Chapter  Google Scholar 

  • Alvarez AM (2004) Integrated approaches for detection of plant pathogenic bacteria and diagnosis of bacterial diseases. Annu Rev Phytopathol 42:339–366

    Article  CAS  PubMed  Google Scholar 

  • Alvarez AM, Adams PD (1999) Flow cytometry: a promising tool for seed health testing. In: Proceedings of the Third International Seed Health Symposium, International Seed Test Association, Ames, pp 110–114

    Google Scholar 

  • Alvarez AM, Rehman FU, Leach JE (1997) Comparison of serological and molecular methods for detection of Xanthomonas oryzae pv. oryzae in rice seed. Presented at Seed Health Test: Progr. Towards the 21st Century, Cambridge

    Google Scholar 

  • Amusa NA, Odunbaku OA (2007) Biological control of bacterial diseases of plants in Nigeria: problems and prospects. Res J Agric Biol Sci 3:979–982

    Google Scholar 

  • Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603–635

    Article  CAS  PubMed  Google Scholar 

  • Balogh B, Jones JB, Momal MT, Olson SM, Obradovic A (2003) Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Dis 87:949–954

    Article  Google Scholar 

  • Behlau F, Hong JC, Jones JB, Graham JH (2013) Evidence for acquisition of copper resistance genes from different sources in citrus-associated xanthomonads. Phytopathology 103:409–418

    Article  CAS  PubMed  Google Scholar 

  • Bertolini E, Olmas A, Lopez MM, Cambra M (2003) Multiplex nested RT-PCR in a single closed tube for sensitive and simultaneous detection of four RNA viruses and Pseudomonas savastanoi pv. savastanoi in olive trees. Phytopathology 93:286–292

    Article  CAS  PubMed  Google Scholar 

  • Burr TJ, Reid CL, Tagliati E, Bazzi C, Sule S (1997) Biological control of grape crown gall by strain F2/5 is not associated with agrocin production or competition for attachment sites on grape cells. Phytopathology 87:706–711

    Article  CAS  PubMed  Google Scholar 

  • Caruso P, Bertolini E, Cambra M, Lopez MM (2003) A new and sensitive Co-operational polymerase chain reaction (Co-PCR) for rapid detection of Ralstonia solanacearum in water. J Microbiol Methods 55:257–272

    Article  CAS  PubMed  Google Scholar 

  • Chitarra LG, Langerak CJ, Bergervoet JH, van den Bulk RW (2002) Detection of the plant pathogenic bacterium, Xanthomonas campestris pv. campestris in seed extracts of Brassica sp. applying fluorescent antibodies and flow cytometry. Cytometry 47:118–126

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Bark EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coons GH, Kotila JE (1925) The transmissible lytic principle (bacteriophage) in relation to plant pathogens. Phytopathology 15:357–370

    Google Scholar 

  • Cubero J, Graham JH (2002) Genetic relationship among worldwide strains of Xanthomonas causing canker in citrus species and design of new primers for their identification by PCR. Appl Environ Microbiol 68:157–164

    Article  Google Scholar 

  • Danks C, Barker I (2000) On-site detection of plant pathogens using lateral flow devices. Bull OEPP/EPPO 30:421–426

    Article  Google Scholar 

  • Flaherty JE, Jones JB, Harbaugh BK, Somodi GC, Jackson LE (2000) Control of bacterial spot on tomato in the greenhouse and field with H-mutant bacteriophages. Hortic Sci 35:882–884

    Google Scholar 

  • Flaherty JE, Harbaugh BK, Jones JB, Somodi GC, Jackson LE (2001) H-mutant bacteriophages as a potential biocontrol of bacterial blight of geranium. Hortic Sci 36:98–100

    Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Goto M (1992) Fundamentals of bacterial plant pathology. Academic Press, Inc., San Diego, 342 pp

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signalling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Hoffman MT, Doud MS, Williams L, Zhang M-Q, Ding F et al (2013) Heat treatment eliminates ‘Candidatus Liberibacter asiaticus’ from infected citrus trees under controlled conditions. Phytopathology 103:15–22

    Article  PubMed  Google Scholar 

  • Horst RK (2001) Westcott’s plant disease handbook, 6th edn. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Hu FP, Young JM, Triggs CM, Park DC, Saul DJ (2001) Relationships within the Proteobacteria of plant pathogenic Acidovorax species and subspecies, Burkholderia species and Herbaspirillum rubrisubalbicans by sequence analysis of 16S rDNA, numerical analysis and determinative tests. Anton Leeuw J Microbiol Serol 80:201–214

    Article  CAS  Google Scholar 

  • Jackson LE (1989) U. S. Patent No. 4828999

    Google Scholar 

  • Jagadeesh KS, Kulkarni JH, Krishnaraj PU (2001) Evaluation of the role of fluorescent siderophore in the biological control of bacterial wilt in tomato using Tn5 mutants of fluorescent Pseudomonas sp. Curr Sci 81:882–883

    Google Scholar 

  • Ji P, Campbell HL, Kloepper JW, Jones JB, Suslow TV et al (2006) Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growth-promoting rhizobacteria. Biol Control 36:358–367

    Article  Google Scholar 

  • Jindal KK, Thind BS, Soni PS (1989) Physical and chemical agents for the control of Xanthomonas campestris pv. vignicola from cowpea seeds. Seed Sci Technol 17:371–382

    Google Scholar 

  • Johnson KB, Stockwell VO (1998) Management of fire blight: a case study in microbial ecology. Annu Rev Phytopathol 36:227–248

    Article  CAS  PubMed  Google Scholar 

  • Johnson KB, Stockwell VO, Sawyer TL (2004) Adaptation of fire blight forecasting to optimize the use of biological controls. Plant Dis 88:41–48

    Article  Google Scholar 

  • Jones JB, Iriarte FB, Obradovic A, Balogh B, Momol MT et al (2006) Management of bacterial spot on tomatoes with bacteriophages. In: Proceedings of the international symposium on biological control of bacterial plant diseases, 1st, Darmstadt, Germany, 408:154, Land-Forstwirtsch: Mitt. Biol. Bundesanst

    Google Scholar 

  • Jones JB, Jackson LE, Balogh B, Obradovic A, Iriarte FB et al (2007) Bacteriophages for plant disease control. Annu Rev Phytopathol 45:245–262

    Article  CAS  PubMed  Google Scholar 

  • Kaewnum S, Zheng D, Reid CL, Johnson KL, Gee JC et al (2013) A host-specific biological control of grape crown gall by Agrobacterium vitis strain F2/5: its regulation and population dynamics. Phytopathology 103:427–435

    Article  CAS  PubMed  Google Scholar 

  • Kerr A (1980) Biological control of crown gall through production of agrocin 84. Plant Dis 64:25–30

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kloepper JW, Rodriguez-Kabana R, Zehnder GW, Murphy JF, Sikora E et al (1999) Plant root-bacterial interactions in biological control of soil borne diseases and potential extension to systemic and foliar diseases. Australas Plant Pathol 28:21–26

    Article  Google Scholar 

  • Koh YJ, Nou IS (2002) DNA markers for identification of Pseudomonas syringae pv. actinidiae. Mol Cell 13:309–314

    CAS  Google Scholar 

  • Kotila JE, Coons GH (1925) Investigations on the blackleg disease of potato. Mich Agric Exp Sta Tech Bull 67:3–29

    Google Scholar 

  • Lang JM, Gent DH, Schwartz HF (2007) Management of Xanthomonas leaf blight of onion with bacteriophages and a plant activator. Plant Dis 91:871–878

    Article  CAS  Google Scholar 

  • Lavermicocca P, Lonigro SL, Valerio F, Evidente A, Visconti A (2002) Reduction of olive knot disease by a bacteriocin from Pseudomonas syringae pv. ciccaronei. Appl Environ Microbiol 68:1403–1407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lelliot RA, Stead DE (1987) Methods for the diagnosis of bacterial diseases of plants. Blackwell Scientific Publications, Oxford, 215 pp

    Google Scholar 

  • Lidert Z (2001) Biopesticides: is there a path to commercial success? In: Vurro M, Gressel J, Butt T, Harman GE, Pilegram A et al (eds) Enhancing biocontrol agents and handling risks. Ios Press, Amsterdam, p 283

    Google Scholar 

  • Louws FJ, Wilson M, Campbell HL, Cuppels DA, Jones JB et al (2001) Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Dis 85:481–488

    Article  CAS  Google Scholar 

  • Miller SA, Beed FD, Harmon CL (2009) Plant disease diagnostic capabilities and networks. Annu Rev Phytopathol 47:15–38

    Article  CAS  PubMed  Google Scholar 

  • Moore ES (1926) d’ Herelle’s bacteriophage in relation to plant parasites. S Afr J Sci 23:306

    Google Scholar 

  • Moss WP, Byrne JM, Campbell HL, Ji P, Bonas U et al (2007) Biological control of bacterial spot of tomato using hrp mutants of Xanthomonas campestris pv. vesicatoria. Biol Control 41:199–206

    Article  Google Scholar 

  • Nomura M (1967) Colicins and related bacteriocins. Annu Rev Microbiol 21:257–284

    Article  CAS  PubMed  Google Scholar 

  • Obradovic A, Jones JB, Momol MT, Balogh B, Olson SM (2004) Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Dis 88:736–740

    Article  Google Scholar 

  • Obradovic A, Jones JB, Momol MT, Olson SM, Jackson LE et al (2005) Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Dis 89:712–716

    Article  CAS  Google Scholar 

  • Okabe N, Goto M (1963) Bacteriophages of plant pathogens. Annu Rev Phytopathol 1:397–418

    Article  Google Scholar 

  • Raio A, Peluso R, Puopolo G, Zoina A (2009) Evidence of pAgK84 transfer from Agrobacterium rhizogenes K84 to natural pathogenic Agrobacterium spp. in an Italian peach nursery. Plant Pathol 58:745–753

    Article  CAS  Google Scholar 

  • Riley MB, Williamson MR, Maloy O (2006) Plant disease diagnosis. APSnet Feature Story. http://www.apsnet.org/online/feature/plantdisease/

  • Sakthivel N, Mortensen CN, Mathur SB (2001) Detection of Xanthomonas oryzae pv. oryzae in artificially inoculated and naturally infected rice seeds and plants by molecular techniques. Appl Microbiol Biotechnol 56:435–441

    Article  CAS  PubMed  Google Scholar 

  • Schaad NW, Frederick RD, Shaw J, Schneider WL, Hickson R et al (2003) Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annu Rev Phytopathol 41:305–324

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249

    Article  CAS  PubMed  Google Scholar 

  • Svircev AM, Lehman SM, Kim W, Barszcz E, Schneider KE et al (2006) Control of the fire blight pathogen with bacteriophages. In: Proceedings of international symposium on biological control of bacterial plant diseases, 1st, Seeheim/Darmstadt, Germany, 259, Berlin: Dtsch. Bibl., CIP-Einh. aufn

    Google Scholar 

  • Tanaka H, Negishi H, Maeda H (1990) Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum M4S and its bacteriophage. Ann Phytopathol Soc Jpn 56:243–246

    Article  Google Scholar 

  • Thind BS (2012) Phytopathogenic procaryotes and plant diseases (refer Bacterial blight of cowpea, pages 405–410 and Bacterial leaf spot of green gram, pages 410–415). Scientific Publishers, Jodhpur, 545 pp

    Google Scholar 

  • Van der Wolf JM, Schoen CD (2004) Bacterial pathogens: detection and identification methods. Marcel Dekker, New York, pp 1–5

    Google Scholar 

  • Van der Wolf JM, Sledz V, Van Elsas JD, Van Overbeek L, Van Bergervoet JHW (2004) Flow cytometry to detect Ralstonia solanacearum and to assess viability. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt: the disease and the Ralstonia solanacearum species complex. APS Press, St. Paul, p 6

    Google Scholar 

  • Van Overbeek LS, Cassidy M, Kozdroz J, Trevors JT, Van Elsas JD (2002) A polyphasic approach for studying the interaction between Ralstonia solanacearum and potential control agents in the tomato phytosphere. J Microbiol Methods 48:69–86

    Article  PubMed  Google Scholar 

  • Veena MS, van Vuurde JW (2002) Indirect immunofluorescence colony staining method for detecting bacterial pathogens of tomato. J Microbiol Methods 49:11–17

    Article  CAS  PubMed  Google Scholar 

  • Velusamy P, Immanuel JE, Gnanamanickam SS, Thomashow L (2006) Biocontrol of rice bacterial blight by plant-associated bacteria producing 2,4-diacetylphloroglucinol. Can J Microbiol 52:56–65

    Google Scholar 

  • Vidaver AK (1976) Prospects for control of phytopathogenic bacteria by bacteriophages and bacteriocins. Annu Rev Phytopathol 14:451–465

    Article  Google Scholar 

  • Walcott RR, Gitaitis RD (2000) Detection of Acidovorax avenae subsp. citrulli in watermelon seed using immunomagnetic separation and the polymerase chain reaction. Plant Dis 84:470–474

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Thind .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Thind, B.S. (2015). Diagnosis and Management of Bacterial Plant Diseases. In: Awasthi, L.P. (eds) Recent Advances in the Diagnosis and Management of Plant Diseases. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2571-3_10

Download citation

Publish with us

Policies and ethics