Skip to main content

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 52))

Abstract

This chapter discusses different aspects of the Reaction-Diffusion (RD) model used to interpret dissociation and reformation of the Si−H bonds (in other words, creation and reverse-anneal of dangling Si-bonds or interface traps) present at the silicon/oxide interfaces of a CMOS transistor. The theory presented in this chapter is later combined with other features of NBTI to interpret measurements in Chap. 6. The reaction part of the R-D model interprets the chemical reactions like Si−H bond dissociation and reformation taking place at the interface, while the diffusion part interprets the transport of Hydrogen species in the oxide and the gate medium. In the NBTI stress phase with a particular stress bias, the Si−H bond dissociation initiates generation of interface traps over time, which later reaches quasi-equilibrium with the diffusive components. After that the diffusion of Hydrogen species defines the time evolution of interface trap generation with a power law. The power-law time exponent is a unique signature of the diffusing species and it shows no variation with the change in stress conditions (bias, temperature and frequency). In the NBTI relaxation phase, the diffusion of Hydrogen species also defines the time evolution of interface trap repassivation. This single dependence of the time evolution, in both stress and relaxation phases, only on the diffusing species leads to frequency independence of interface trap generation—a distinct feature of NBTI measured over a wide range of transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This solution is intriguing, as among many differential equations used to describe natural phenomena in this universe, RD is a unique one that gives a robust power-law time exponent for several decades in time, whose value depends only on nature of diffusion.

  2. 2.

    An alternate dissociation mechanism of Si−H via passivated dopants like phosphorous-Hydrogen (P–H) complex though have a lower dissociation energy and a exothermic reaction, P–H assisted dissociation of Si−H results n ~ 1/4 [12, 26] and E A,IT ~ 0.36 eV, which is not supported by recent NBTI measurements, see Chap. 3.

  3. 3.

    Similar calculation can also be performed using Sanderson’s scale [58] that leads to similar values.

References

  1. A.S. Grove, Physics and Technology of Semiconductor Devices (Wiley, London, 1971)

    Google Scholar 

  2. B.E. Deal, M. Sklar, A.S. Grove, E.H. Snow, Characteristics of the surface-state charge (Qss) of thermally oxidized silicon. J. Electrochem. Soc. 114, 266 (1967)

    Article  Google Scholar 

  3. P.V. Gray, D.M. Brown, Density of SiO2–Si interface states. App. Phys. Lett. 8, 31 (1966)

    Article  Google Scholar 

  4. Y. Nishi, Study of silicon-silicon dioxide structure by electron spin resonance 1. Japanese J. App. Phys. 10, 52 (1971)

    Article  Google Scholar 

  5. P.J. Caplan, E.H. Poindexter, B.E. Deal, R.R. Razouk, ESR centers, interface states, and oxide fixed charge in thermally oxidized silicon wafers. J. App. Phys. 50, 5847 (1979)

    Article  Google Scholar 

  6. K.L. Brower, Structural features at the Si–SiO2 interface. Zeitschrift Fur Physikalische Chemie Neue Folge 151, 177 (1987)

    Article  Google Scholar 

  7. E. Cartier, J.H. Stathis, D.A. Buchanan, Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic-hydrogen. App. Phys. Lett. 63, 1510 (1993)

    Article  Google Scholar 

  8. L.D. Thanh, P. Balk, Elimination and generation of Si–SiO2 interface traps by low-temperature hydrogen annealing. J. Electrochem. Soc. 135, 1797 (1988)

    Article  Google Scholar 

  9. A.H. Edwards, Theory of Pb center at 〈111〉 Si/SiO2 interface. P. Rev. 36, 9638 (1987)

    Google Scholar 

  10. R. Helms, E.H. Poindexter, The silicon silicon-dioxide system—Its microstructure and imperfections. Rep. Prog. Phys. 57, 791 (1994)

    Article  Google Scholar 

  11. D.K. Schroder, J.A. Babcock, Negative bias temperature instability: road to cross in deep submicron silicon semiconductor manufacturing. J. App. Phys. 94, 1 (2003)

    Article  Google Scholar 

  12. K.O. Jeppson, C.M. Svensson, Negative bias stress of mos devices at high electric-fields and degradation of Mnos devices. J. App. Phys. 48, 2004 (1977)

    Article  Google Scholar 

  13. S. Ogawa, N. Shiono, Generalized diffusion-reaction model for the low- field charge-buildup instability at the Si–SiO2 interface. P. Rev. 51, 4218 (1995)

    Google Scholar 

  14. M.A. Alam, S. Mahapatra, A comprehensive model of PMOS NBTI degradation. Microelectron. Reliab. 45, 71 (2005)

    Article  Google Scholar 

  15. D.K. Schroder, Negative bias temperature instability: what do we understand? Microelectron. Reliab. 47, 841 (2007)

    Article  Google Scholar 

  16. M.A. Alam, H. Kufluoglu, D. Varghese, S. Mahapatra, A comprehensive model for PMOS NBTI degradation: recent progress. Microelectron. Reliab. 47, 853 (2007)

    Article  Google Scholar 

  17. S. Kumar, C.H. Kim, S.S. Sapatnekar, An analytical model for negative bias temperature instability, in International Conference on Computer-Aided Design, 6D.1, 2006

    Google Scholar 

  18. H. Kufluoglu, M.A. Alam, A generalized reaction-diffusion model with explicit H–H2 Dynamics for negative bias temperature instability (NBTI) degradation. IEEE Trans. Electron Devices 54, 1101 (2007)

    Article  Google Scholar 

  19. A.E. Islam, H. Kufluoglu, D. Varghese, M.A. Alam, Critical analysis of short-term negative bias temperature instability measurements: Explaining the effect of time-zero delay for on-the-fly measurements. App. Phys. Lett. 90, 083505 (2007)

    Article  Google Scholar 

  20. A.E. Islam, H. Kufluoglu, D. Varghese, S. Mahapatra, M.A. Alam, Recent issues in negative bias temperature instability: initial degradation, field-dependence of interface trap generation, hole trapping effects, and relaxation. IEEE Trans. Electron Devices 54, 2143 (2007)

    Article  Google Scholar 

  21. A.T. Krishnan, S. Chakravarthi, P. Nicollian, V. Reddy, S. Krishnan, Negative bias temperature instability mechanism: The role of molecular hydrogen. App. Phys. Lett. 88, 153518 (2006)

    Article  Google Scholar 

  22. J.B. Yang, T.P. Chen, S.S. Tan, L. Chan, Analytical reaction-diffusion model and the modeling of nitrogen-enhanced negative bias temperature instability. App. Phys. Lett. 88, 172109 (2006)

    Article  Google Scholar 

  23. A.T. Krishnan, C. Chancellor, S. Chakravarthi, P.E. Nicollian, V. Reddy, A. Varghese, R.B. Khamankar, S. Krishnan, L. Levitov, Material dependence of hydrogen diffusion: implications for NBTI degradation, IEEE Int. Electron Devices Meet. Tech. Digest, 688 (2005)

    Google Scholar 

  24. S. Chakravarthi, A.T. Krishnan, V. Reddy, S. Krishnan, Probing negative bias temperature instability using a continuum numerical framework: physics to real world operation. Microelectron. Reliab. 47, 863 (2007)

    Article  Google Scholar 

  25. M.A. Alam, A critical examination of the mechanics of dynamic NBTI for PMOSFETs, IEEE Int. Electron Devices Meet. Tech. Digest, 345 (2003)

    Google Scholar 

  26. J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford University Press, Oxford, 1980)

    Google Scholar 

  27. T. Grasser, P.J. Wagner, P. Hehenberger, W. Goes, B. Kaczer, A rigorous study of measurement techniques for negative bias temperature instability. IEEE Trans. Device Mater. Reliab. 8, 526 (2008)

    Article  Google Scholar 

  28. S. Rangan, N. Mielke, E.C.C. Yeh, Universal recovery behavior of negative bias temperature instability [PMOSFETs], IEEE Int. Electron Devices Meet. Tech. Digest, 341 (2003)

    Google Scholar 

  29. H. Reisinger, O. Blank, W. Heinrigs, A. Muhlhoff, W. Gustin, C. Schlunder, Analysis of NBTI degradation- and recovery-behavior based on ultra fast VT measurements, in IEEE International Reliability Physics Symposium Proceedings, (2006), p. 448

    Google Scholar 

  30. T. Grasser, W. Gos, V. Sverdlov, and B. Kaczer, The universality of NBTI relaxation and its implications for modeling and characterization, in IEEE International Reliability Physics Symposium Proceedings, (2007), p. 268

    Google Scholar 

  31. C.R. Parthasarathy, M. Denais, V. Huard, G. Ribes, E. Vincent, A. Bravaix, New insights into recovery characteristics post NBTI stress, in IEEE International Reliability Physics Symposium Proceedings, (2006), p. 471

    Google Scholar 

  32. N. Klein, Mechanism of self-healing electrical breakdown in MOS structures. IEEE Trans. Electron Devices 13, 788 (1966)

    Article  Google Scholar 

  33. P. Solomon, Breakdown in Silicon-Oxide. J. Vac. Sci. Technol. 14, 1122 (1977)

    Article  Google Scholar 

  34. K.F. Schuegraf, C.M. Hu, Hole injection SiO2 breakdown model for very-low voltage lifetime extrapolation. IEEE Trans. Electron Devices 41, 761 (1994)

    Article  Google Scholar 

  35. R. Degraeve, G. Groeseneken, R. Bellens, M. Depas, H.E. Maes, A consistent model for the thickness dependence of intrinsic breakdown in ultra-thin oxides. IEEE Int. Electron Devices Meet. Tech. Digest, 863 (1995)

    Google Scholar 

  36. D.J. DiMaria, J.H. Stathis, Explanation for the oxide thickness dependence of breakdown characteristics of metal-oxide-semiconductor structures. App. Phys. Lett. 70, 2708 (1997)

    Article  Google Scholar 

  37. J.H. Stathis, Percolation models for gate oxide breakdown. J. App. Phys. 86, 5757 (1999)

    Article  Google Scholar 

  38. M. Alam, B. Weir, P. Silverman, A future of function or failure? IEEE Circuits Devices 18, 42 (2002)

    Article  Google Scholar 

  39. D. Varghese, S. Mahapatra, M.A. Alam, Hole energy dependent interface trap generation in MOSFET Si/SiO2 interface. IEEE Electron Device Lett. 26, 572 (2005)

    Article  Google Scholar 

  40. S. Mahapatra, D. Saha, D. Varghese, P.B. Kumar, On the generation and recovery of interface traps in MOSFETs subjected to NBTI, FN, and HCI stress. IEEE Trans. Electron Devices 53, 1583 (2006)

    Article  Google Scholar 

  41. D. Varghese, H. Kufluoglu, V. Reddy, H. Shichijo, D. Mosher, S. Krishnan, M.A. Alam, OFF-State degradation in drain-extended NMOS transistors: Interface damage and correlation to dielectric breakdown. IEEE Trans. Electron Devices 54, 2669 (2007)

    Article  Google Scholar 

  42. L. Tsetseris, X.J. Zhou, D.M. Fleetwood, R.D. Schrimpf, S.T. Pantelides, Physical mechanisms of negative-bias temperature instability. App. Phys. Lett. 86, 142103 (2005)

    Article  Google Scholar 

  43. L. Tsetseris, X.J. Zhou, D.M. Fleetwood, R.D. Schrimpf, S.T. Pantelides, Hydrogen-related instabilities in MOS devices under bias temperature stress. IEEE Trans. Device Mater. Reliab. 7, 502 (2007)

    Article  Google Scholar 

  44. C.L. Chen, Y.M. Lin, C.J. Wang, K. Wu, A new finding on NBTI lifetime model and an investigation on NBTI degradation characteristic for 1.2 nm ultra thin oxide, in IEEE International Reliability Physics Symposium Proceedings, (2005), p. 704

    Google Scholar 

  45. N. Kimizuka, T. Yamamoto, T. Mogami, K. Yamaguchi, K. Imai, T. Horiuchi, The impact of bias temperature instability for direct-tunneling ultrathin gate oxide on MOSFET scaling, in Symposium on VLSI Technology, (1999), p. 73

    Google Scholar 

  46. H. Aono, E. Murakami, K. Okuyama, A. Nishida, M. Minami, Y. Ooji, K. Kubota, Modeling of NBTI degradation and its impact on electric field dependence of the lifetime, in IEEE International Reliability Physics Symposium Proceedings, (2004), p. 23

    Google Scholar 

  47. A.E. Islam, G. Gupta, S. Mahapatra, A. Krishnan, K. Ahmed, F. Nouri, A. Oates, M.A. Alam, Gate leakage vs. NBTI in plasma nitrided oxides: characterization, physical principles, and optimization. IEEE Int. Electron Devices Meet. Tech. Digest, 329 (2006)

    Google Scholar 

  48. D. Varghese, D. Saha, S. Mahapatra, K. Ahmed, F. Nouri, M.A. Alam, On the dispersive versus Arrhenius temperature activation of NBTI time evolution in plasma nitrided gate oxides: measurements, theory, and implications. IEEE Int. Electron Devices Meet. Tech. Digest, 684 (2005)

    Google Scholar 

  49. J.W. McPherson, C.H. Mogul, Underlying physics of the thermochemical E model in describing low-field time-dependent dielectric breakdown in SiO2 thin films. J. App. Phys. 84, 1513 (1998)

    Article  Google Scholar 

  50. B. Tuttle, Energetics and diffusion of hydrogen in SiO2. Phys. Rev. 61, 4417 (2000)

    Article  Google Scholar 

  51. C.G. Van de Walle, R.A. Street, Structure, energetics, and dissociation of Si−H bonds at dangling bonds in silicon. Phys. Rev. 49, 14766 (1994)

    Article  Google Scholar 

  52. A. Ghetti, A. Hamad, P.J. Silverman, H. Vaidya, N. Zhao, Self-consistent simulation of quantization effects and tunneling current in ultra-thin gate oxide MOS devices, in International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), (1999), p. 239

    Google Scholar 

  53. L.F. Register, E. Rosenbaum, K. Yang, Analytic model for direct tunneling current in polycrystalline silicon-gate metal-oxide-semiconductor devices. App. Phys. Lett. 74, 457 (1999)

    Article  Google Scholar 

  54. A.E. Islam, G. Gupta, K.Z. Ahmed, S. Mahapatra, M.A. Alam, Optimization of gate leakage and NBTI for plasma-nitrided gate oxides by numerical and analytical models. IEEE Trans. Electron Devices 55, 1143 (2008)

    Article  Google Scholar 

  55. A.E. Islam, J.H. Lee, W.H. Wu, A. Oates, M.A. Alam, Universality of interface trap generation and its impact on id degradation in strained/unstrained PMOS devices during NBTI stress. IEEE Int. Electron Devices Meet. Tech. Digest, 107 (2008)

    Google Scholar 

  56. A.E. Islam, Ph.D. Dissertation, Theory and characterization of random defect formation and its implication in variability of nanoscale transistors, Electrical and Computer Engineering, Purdue University, 2010

    Google Scholar 

  57. L. Pauling, The Nature of The Chemical Bond, 3rd edn. (Cornell University Press, New York, 1960)

    Google Scholar 

  58. R.T. Sanderson, Chemical Bonds and Bond Energy (Academic Press, New York, 1971)

    Google Scholar 

  59. C. Kittel, Introduction to Solid State Physics (Wiley, London, 1996), p. 381

    Google Scholar 

  60. D.A. Muller, T. Sorsch, S. Moccio, F.H. Baumann, K. Evans-Lutterodt, G. Timp, The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758 (1999)

    Article  Google Scholar 

  61. G.J. Gerardi, E.H. Poindexter, P.J. Caplan, N.M. Johnson, Interface traps and Pb centers in oxidized (100) silicon-wafers. App. Phys. Lett. 49, 348 (1986)

    Article  Google Scholar 

  62. P.M. Lenahan, Dominating defects in the MOS system: Pb and E′ centers, in Defects in Microelectronic Materials and Devices, ed. by S.P.D. Fleetwood, R.D. Schrimpf (CRC Press, Boca Raton, 2008), p. 163

    Google Scholar 

  63. R.A. Weeks, The many varieties of E′ centers—A review. J. Non Crystalline Solids 179, 1 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Narendra Parihar for his editorial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Ehteshamul Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Islam, A.E., Goel, N., Mahapatra, S., Alam, M.A. (2016). Reaction-Diffusion Model. In: Mahapatra, S. (eds) Fundamentals of Bias Temperature Instability in MOS Transistors. Springer Series in Advanced Microelectronics, vol 52. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2508-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2508-9_5

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2507-2

  • Online ISBN: 978-81-322-2508-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics