Skip to main content

Biodegradable Starch Nanocomposites

  • Chapter
  • First Online:
Eco-friendly Polymer Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 75))

Abstract

Biodegradable thermoplastic materials offer great potential to be used in food packaging or biomedical industry. In this chapter we will present a review of the research done on starch and starch nanocomposites. In the case of nanocomposites based on starch, special attention will be given to the influence of starch nanoparticles, cellulose whiskers, zinc oxide nanorods, antioxidants, and antimicrobial inclusion on the physicochemical properties of the materials. The discussion will be focused on structural, mechanical, and barrel properties as well as on degradation, antibacterial and antioxidant activities. Finally, we will discuss our perspectives on how future research should be oriented to contribute in the substitution of synthetic materials with new econanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

σ :

Tensile strength

Ag-NP:

Silver nanoparticles

B-NC:

Bamboo nanocrystals

C-NC:

Cellulose nanocrystals

C-NF:

Cellulose nanofibers

C-NW:

Cellulose nanowhiskers

CH:

Chitosan

CH-NP:

Chitosan nanoparticles

CA-S-NP:

Citric acid-modified starch nanoparticles

CO2 :

Carbon dioxide

CMC:

Carboxymethylcellulose sodium

D:

Diameter

DAS:

Dialdehyde starch

F-CN:

Flax cellulose nanocrystals

HC-NC:

Hemp (Cannabis sativa) cellulose nanocrystals

k :

Aspect ratio

L :

Length

MCC:

Microcrystalline cellulose

MEO:

Pennyroyal

MFC:

Microfibrillated cellulose

MMT:

Montmorillonite

PLA:

Polylactic acid

PO2 :

Oxygen permeability

PVA:

Polyvinyl alcohol

REX:

Reactive extrusion

RTE:

Ready-to-eat

S-NP:

Starch nanoparticles

SME:

Specific mechanical energy

T d :

Decomposition temperature

T g :

Glass transition temperature

TiO2 :

Titanium oxide

TiO2-NP:

Titanium oxide nanoparticles

T m :

Melting temperature

TPS:

Thermoplastic starch

WVP:

Water vapor permeability

UV:

Ultraviolet spectroscopy

wt%:

Weight percentage

ZEO:

Zataria multiflora Boiss

ZnO:

Zinc oxide

ZnO-NP:

Zinc oxide nanoparticles

ZnO-NP-CMC:

Zinc oxide nanoparticles-carboxymethylcellulose sodium

ZnO-NR:

Zinc oxide nanorods

References

  • Abdorreza MN, Cheng LH, Karim AA (2011) Effects of plasticizers on thermal properties and heat sealability of sago starch films. Food Hydrocolloid 25:56–60

    CAS  Google Scholar 

  • Akdogan H (1996) Pressure, torque, and energy responses of a twin screw extruder at high moisture contents. Food Res Int 29:423–429

    Google Scholar 

  • Alebooyeh R, Nafchi AM, Jokar M (2012) The effects of ZnO nanorods on the characteristics of sago starch biodegradable films. J Chem Health Risks 2:13–16

    Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28:1–63

    Google Scholar 

  • Amada S, Ichikawa Y, Munekata T, Nagase Y, Shimuzu H (1997) Fibre texture and mechanical graded structure of bamboo. Compos Part B Eng 28:13–20

    Google Scholar 

  • Angellier H, Molina-Boisseau S, Dole P, Dufresne A (2006) Thermoplastic starch-waxy maize starch nanocrystals nanocomposites. Biomacromolecules 7:531–539

    CAS  Google Scholar 

  • Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353

    CAS  Google Scholar 

  • Angles MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2.Mechanical behavior. Macromolecules 34:2921–2931

    CAS  Google Scholar 

  • Aouada FA, Mattoso LHC, Longo E (2011) A simple procedure for the preparation of laponite and thermoplastic starch nanocomposites: structural, mechanical, and thermal characterizations. J Therm Comp Mat 26:109–124

    Google Scholar 

  • Appendini P, Hotchkiss JH (1997) Immobilization of lysozyme on food contact polymers as potential antimicrobial films. Packag Technol Sci 10:271–279

    CAS  Google Scholar 

  • Arockianathan PM, Sekar S, Kumaran B, Sastry TP (2012) Preparation, characterization and evaluation of biocomposite films containing chitosan and sago starch impregnated with silver nanoparticles. Int J Biol Macromol 50:939–946

    Google Scholar 

  • Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75:43–49

    Google Scholar 

  • Arvanitoyannis I, Billiaderis CG, Ogawa H, Kawasaki N (1998) Biodegradable films made from low-density polyethylene (LDPE), rice starch and potato starch for food packaging applications: part 1. Carbohydr Polym 36:89–104

    CAS  Google Scholar 

  • Atwell WA, Hood LF, Lineback DR, Varriano-Marston E, Zobel HF (1988) The terminology and methodology associated with basic starch phenomena. Cereal Food World 33:306–311

    Google Scholar 

  • Auer G, Griebler WD, Jahn B (2005) Industrial inorganic pigments. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Google Scholar 

  • Avérous L, Boquillon N (2004) Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydr Polym 56:111–122

    Google Scholar 

  • Ayadi F, Dole P (2011) Stoichiometric interpretation of thermoplastic starch water sorption and relation to mechanical behavior. Carbohydr Polym 84:872–880

    CAS  Google Scholar 

  • Baker R, Baldwin E, Nisperos-Carriedo M (1994) Edible coatings and films to improve food quality. CRC Press, Lancaster, p 392

    Google Scholar 

  • Barringer EA, Bowen HK (1982) Formation, packing and sintering of monodispersed TiO2 powders. J Am Ceram Soc 65:199–201

    Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054

    CAS  Google Scholar 

  • Bergaya F, Jaber M, Lambert JF (2009) Clays and clay minerals as layered nanofillers for (bio) polymers. In: Averous L, Pollet E (eds) Environmental silicate nano-biocomposites (green energy and technology). Springer, London, pp 41–75

    Google Scholar 

  • Bertan LC, Tanada-Palmu PS, Siani AC, Grosso CRF (2005) Effect of fatty acids and ‘Brazilian elemi’ on composite films based on gelatin. Food Hydrocolloid 19:73–82

    CAS  Google Scholar 

  • Bertolini C, Souza E, Nelson JE, Huber KC (2003) Composition and reactivity of A- and B-type starch granules of normal, partial waxy, and waxy wheat. Cereal Chem 80:544–549

    CAS  Google Scholar 

  • Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Fischer JE, Johnson AT (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767–2769

    CAS  Google Scholar 

  • Bierhalz ACK, da Silva MA, Kieckbusch TG (2012) Natamycin release from alginate/pectin films for food packaging applications. J Food Eng 110:18–25

    CAS  Google Scholar 

  • Borges SV, Dias ML, Pita VJRR, Azuma C, Dias MV (2012) Water vapor permeability and tensile properties of poly(l-lactic acid)/synthetic mica nanocomposites prepared by melt blending. J Plast Film Sheet. doi:10.1177/8756087912463712

    Google Scholar 

  • Bourtoom T (2009) Edible protein films: properties enhancement. Int Food Res J 16:1–9

    CAS  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62

    CAS  Google Scholar 

  • Bouyer E, Mekhloufi G, Rosilio V, Grossiord J-L, Agnely F (2012) Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field? Int J Pharma 436:359–378

    CAS  Google Scholar 

  • Bradley EL, Castle L, Chaudhry Q (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol doi:10.1016/j.tifs.2011.01.002 (in press)

  • Cai K, Bossert J, Jandt KD (2006) Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? Colloid Surf B Biointerfaces 49:136–144

    CAS  Google Scholar 

  • Cao X, Chen Y, Chang PR, Huneault MA (2007) Preparation and properties of plasticized starch/multiwalled carbon nanotubes composites. J Appl Polym Sci 106:1431–1437

    CAS  Google Scholar 

  • Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008a) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2:502–510

    CAS  Google Scholar 

  • Cao X, Chen Y, Chang PR, Stumborg M, Huneault MA (2008b) Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 109:3804–3810

    CAS  Google Scholar 

  • Cao X, Ding B, Yu J, Al-Deyab S (2012) Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydr Polym 90:1075–1080

    CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    CAS  Google Scholar 

  • Copeland L, Blazek J, Salman H, Tang MCM (2009) Form and functionality of starch. Food Hydrocolloid 23:1527–1531

    CAS  Google Scholar 

  • Corzo-Martínez M, Corzo N, Villamiel M (2007) Biological properties of onions and garlic. Trends Food Sci Tech 18:609–625

    Google Scholar 

  • Creutz C (1981) The complexities of ascorbate as a reducing agent. Inorg Chem 20:4449–4452

    CAS  Google Scholar 

  • Cuq JL, Aymard C, Cheftel C (1977) Effects of hypochlorite treatments on a methionyl peptide. Food Chem 2:309–314

    CAS  Google Scholar 

  • Chang PR, Yu J, Ma X (2009) Fabrication and characterization of Sb2O3/carboxymethyl cellulose sodium and the properties of plasticized starch composite films. Macromol Mat Eng 294:762–767

    CAS  Google Scholar 

  • Chang PR, Jian R, Zheng P, Yu J, Ma X (2010a) Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydr Polym 79:301–305

    CAS  Google Scholar 

  • Chang PR, Jian R, Yu J, Ma X (2010b) Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chem 120:736–740

    CAS  Google Scholar 

  • Chang PR, Jian R, Yu J, Ma X (2010c) Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr Polym 80:421–426

    Google Scholar 

  • Chakraborty S, Sahoo B, Teraka I, Miller LM, Gross RA (2005) Enzyme-catalyzed regioselective modification of starch nanoparticles. Macromolecules 38:61–68

    CAS  Google Scholar 

  • Chartoff RP (1981) Thermal characterization of polymeric materials. In: Turi E (ed) Academic Press, San Diego, p 526

    Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam A 25:241–258

    CAS  Google Scholar 

  • Chen Y, Cao X, Chang PR, Huneault MA (2008) Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr Polym 73:8–17

    CAS  Google Scholar 

  • Chen Y, Liu C, Chang PR, Anderson DP, Huneault MA (2009a) Pea starch-based composite films with pea hull fibers and pea hull fiber-derived nanowhiskers. Polym Eng Sci 49:369–378

    CAS  Google Scholar 

  • Chen Y, Liu C, Chang PR, Cao X, Anderson DP (2009b) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 76:607–615

    CAS  Google Scholar 

  • Cheng LH, Karim AA, Seow CC (2006) Effects of water–glycerol and water–sorbitol interactions on the physical properties of konjac glucomannan films. J Food Sci 71:62–67

    Google Scholar 

  • Cheviron P, Gouanvé F, Espuche E (2014) Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites. Carbohydr Polym 108:291–298

    CAS  Google Scholar 

  • Chivrac CF, Pollet E, Dole P, Avérous L (2010) Starch base nano-biocomposites: plasticizer impact on the montmorillonite exfoliation process. Carbohydr Polym 79:941–947

    CAS  Google Scholar 

  • Davidson PM, Zivanovic S (2003) The use of natural antimicrobials. In: Zeuthen P, Bogh-Sorensen L (eds) Food preservation techniques. CRC Press, Boca Raton, pp 5–30

    Google Scholar 

  • Davidson PM, Taylor TM (2007) Chemical preservatives and natural antimicrobial compounds. In: Doyle MP, Beuchat LR (eds) Food microbiology: fundamentals and frontiers. ASM Press, Washington, DC, pp 713–746

    Google Scholar 

  • Davies MB (1992) Reactions of L-ascorbic acid with transition metal complexes. Polyhedron 11:285–321

    CAS  Google Scholar 

  • De Azedero HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253

    Google Scholar 

  • De Berardis B, Civitelli G, Condello M, Lista P, Pozzi R, Arancia G, Meschini S (2010) Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol Appl Pharm 246:116–127

    Google Scholar 

  • de Mesa NJE, Sajid A, Singh N, Shi YC, Dogan H, Sang Y (2009) Soy protein fortified expanded extrudates: baseline study using normal corn starch. J Food Eng 90:262–270

    Google Scholar 

  • Dhakal HN, Zhang Z (2012) Polymer matrix composites: moisture effects and dimensional stability. In: Nicolais L, Borsachiello A (eds) Wiley encyclopedia of composites. Wiley, New York

    Google Scholar 

  • Dieu T, Liem N, Mai Y, Tung N (2004) Study on fabrication of BMC laminates based on unsaturated polyester resin reinforced by hybrid bamboo/glass fibers. JSME Int J Ser A 47:570–573

    CAS  Google Scholar 

  • DTU Food (2009) Food National Institute Food. Danish Food Composition Databank. (http://www.foodcomp.dk/v7/fcdb_foodnutrlist.asp?CompId=0065)

  • Du YY, Fang HH, Zheng PW (2013) Porous sepiolite/starch composites: Preparation, structure and absorption properties. Adv Mat Res 1937:634–638

    Google Scholar 

  • Duquesne E, Moins S, Alexandre M, Dubois P (2007) How can nanohybrids enhance polyester/sepiolite nanocomposite properties? Macromol Chem Phys 208:2542–2550

    CAS  Google Scholar 

  • Duran N, Lemes AP, Duran M, Freer J, Baeza J (2011) A mini review of cellulose nanocrystals and its potential integration as co-product in bioethanol production. J Chil Chem Soc 56:672–677

    CAS  Google Scholar 

  • Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182

    CAS  Google Scholar 

  • Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng C 33:1819–1841

    CAS  Google Scholar 

  • Ellmer K, Klein A, Rech B (2008) Transparent conductive zinc oxide. Springer, Heidelberg

    Google Scholar 

  • Eugenius GF, Jongboom ROJ, Feil H, Gotlieb KF, Boersma A (2000) Patent WO 2000069916 A1, 20001123

    Google Scholar 

  • Espitia PJP, Soares NFF, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Alves Medeiros EA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464

    CAS  Google Scholar 

  • European Project (FlexPakRenew–FP7/2007-2013—no. 207810. http://ec.europa.eu/research/infocentre/converting.cfm

  • Famá L, Rojas AM, Goyanes S, Gerschenson L (2005) Mechanical properties of tapioca-starch edible films containing sorbates. LWT 38:631–639

    Google Scholar 

  • Famá L, Flores SK, Gerschenson L, Goyanes S (2006) Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures. Carbohydr Polym 66:8–15

    Google Scholar 

  • Famá L, Goyanes S, Gerschenson L (2007) Influence of storage time at room temperature in physicochemical properties of tapioca starch edible films. Carbohydr Polym 70:265–273

    Google Scholar 

  • Famá L, Gerschenson L, Goyanes S (2009a) Starch-vegetable fiber composites to protect food products. Carbohydr Polym 75:230–235

    Google Scholar 

  • Famá L, Gerschenson LN, Goyanes S (2009b) Nanocompuestos biodegradables y comestibles: almidón-polvo de ajo. Suplemento de la Revista Latinoamericana de Metalurgia y Materiales S1(3):1235–1240

    Google Scholar 

  • Famá L, Bittante AMBQ, Sobral PJA, Goyanes S, Gerschenson LN (2010) Garlic powder and wheat bran as fillers: their effect on the physicochemical properties of edible biocomposites. Mat Sci Eng C 30:853–859

    Google Scholar 

  • Famá LM, Pettarin V, Goyanes S, Bernal CR (2011) Starch based nanocomposites with improved mechanical properties. Carbohydr Polym 83:1226–1231

    Google Scholar 

  • Famá LM, Gañan P, Bernal CR, Goyanes S (2012) Biodegradable starch nanocomposites with low water vapor permeability and high storage modulus. Carbohydr Polym 87:1989–1993

    Google Scholar 

  • Famá L, Kumar R (2014) Nanocomposites based on polylactic acid (PLA) reinforced by functionalized carbon nanotubes (CNT). In: Kumar R (ed) Polymer-matrix composites: types, applications and performance. Nova Science Publishers, Inc. USA (in press)

    Google Scholar 

  • FDA (2011) Part 182-substances generally recognized as safe. Food and drug administration. Washington DC. http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c0ecfr&sid0786bafc6f6343634fbf79fcdca7061e1&rgn0div5&-

  • Flores S, Famá L, Rojas AN, Goyanes S, Gerschenson L (2007) Physicochemical properties of tapioca-starch edible films. Influence of gelatinization and drying technique. Food Res Int 4:257–265

    Google Scholar 

  • Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    CAS  Google Scholar 

  • Gálvez A, Abriouel H, López RL, Omar NB (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70

    Google Scholar 

  • García MA, Martino MN, Zaritzky NE (1998) Starch-based coatings: effect on refrigerated strawberry (Fragaria × Ananassa) quality. J Sci Food Agric 76:411–420

    Google Scholar 

  • García NL, Famá L, Dufresne A, Aranguren A, Goyanes S (2009a) A comparison between the physico-chemical properties of tuber and cereal starches. Food Res Int 42:976–982

    Google Scholar 

  • García NL, Ribba L, Dufresne A, Aranguren M, Goyanes S (2009b) Physico mechanical properties of biodegradable starch nanocomposites. Macromol Mater Eng 294:169–177

    Google Scholar 

  • García NL, Ribba L, Dufresne A, Aranguren M, Goyanes S (2011) Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydr Polym 84:203–210

    Google Scholar 

  • Galicia-García T, Martínez-Bustos F, Jiménez-Arévalo OA, Arencón D, Gámez-Pérez J, Martínez AB (2012) Films of native and modified starch reinforced with fiber: influence of some extrusion variables using response surface methodology. J Appl Polym Sci 126:327–336

    Google Scholar 

  • Gaspar M, Benko Z, Dogossy G, Reczey K, Czigany T (2005) Reducing water absorption in compostable starch-based plastics. Polym Degrad Stab 90:563–569

    CAS  Google Scholar 

  • Ghanbarzadeh B, Almasi H, Entezami A (2011) Improving the barrier and mechanical properties of corn starch-based edible films: effect of citric acid and carboxymethyl cellulose. Ind Crop Prod 33:229–235

    CAS  Google Scholar 

  • Ghavami K (2005) Bamboo as reinforcement in structural concrete elements. Cement Concr Comp 27:637–649

    CAS  Google Scholar 

  • Ghasemlou M, Aliheidari N, Fahmi R, Shojaee-Aliabadi S, Keshavarz B, Cran MJ, Khaksar R (2013) Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydr Polym 98:1117–1126

    CAS  Google Scholar 

  • Ghori MU, Alba K, Smith AM, Conway BR, Kontogiorgos V (2014) Okra extracts in pharmaceutical and food applications. Food Hydrocolloid ISSN 0268005X. Available online 26 April 2014 (in press)

    Google Scholar 

  • Godavarti S, Karwe MV (1997) Determination of specific mechanical energy distribution on a twin-screw extruder. J Agric Eng Res 67:277–287

    Google Scholar 

  • Godbillot L, Dole P, Joly C, Rogé B, Mathlouthi M (2006) Analysis of water binding in starch plasticized films. Food Chem 96:380–386

    CAS  Google Scholar 

  • González Seligra P, Nuevo F, Lamanna M, Famá L (2013) Covalent grafting of carbon nanotubes to PLA in order to improve compatibility. Compos B Eng 46:61–68

    Google Scholar 

  • Goyanes S, Aranguren M, García N, Famá L, Ribba L, Dufresne A (2010) International Patent No 20.100.100.044

    Google Scholar 

  • Gropper M, Moraru CI, Kokini JL (2002) Effect of specific mechanical energy on properties of extruded protein–starch mixtures. Cereal Chem 79:429–433

    CAS  Google Scholar 

  • Guerrero P, Beatty E, Kerry JP, de la Caba K (2012) Extrusion of soy protein with gelatin and sugars at low moisture content. J Food Eng 110:53–59

    CAS  Google Scholar 

  • Gutiérrez TJ, Pérez E, Guzmán R, Tapia MS, Famá L (2014a) Physicochemical and functional properties of native and modified by crosslinking, dark cush-cush yam (Dioscorea trifida) and cassava (Manihot esculenta) starch. J Polym Biopolym Phys Chem 2:1–5

    Google Scholar 

  • Gutiérrez TJ, Morales NJ, Tapia MS, Pérez E, Famá L (2014b) Corn starch 80:20 “waxy”: regular, “native” and phosphated, as bio-matrixes for edible films. Procedia materials science. Elsevier, New York. ISSN 2211-8128 (in press)

    Google Scholar 

  • Haafiz MKM, Hassan A, Zakaria Z, Inuwa IM (2014) Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydr Polym 103:119–125

    CAS  Google Scholar 

  • Halsall TG, Hirst EL, Jones JKN, Sansome FW (1948) The amylose content of the starch present in the growing potato tuber. Biochem J 43:70–72

    CAS  Google Scholar 

  • Halioua B, Ziskind B (2005) Medicine in the days of the pharaohs. Belknap Press of Harvard University Press. http://www.PalArch.nl, web based Netherlands scientific journal

  • Han JH (2005) Antimicrobial packaging systems. In: Jung HH (ed) Innovations in food packaging. Academic Press, London, pp 80–107

    Google Scholar 

  • Han JH, Seo GH, Park IM, Kim GN, Lee DS (2006) Physical and mechanical properties of pea starch edible films containing beeswax emulsions. J Food Sci 71:290–296

    Google Scholar 

  • Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromolecules 9:1494–1505

    Google Scholar 

  • Hasobe T, Imahori H, Fukuzumi S, Kamat PV (2003) Light energy conversion using mixed molecular nanoclusters. Porphyrin and C60 cluster films of efficient photocurrent generation. J Phys Chem B 107:12105–12112

    CAS  Google Scholar 

  • He Y, Kong W, Wang W, Liu T, Liu Y, Gong Q, Gao J (2012) Modified natural halloysite/potato starch composite films. Carbohydr Polym 87:2706–2711

    CAS  Google Scholar 

  • He A, Li S, Ma J, Yang Z (2014) Environmental friendly polymer materials for sustainable Development. Int J Polym Sci 2014. Article ID 107028. http://dx.doi.org/10.1155/2014/107028 (in press)

  • Hejri Z, Ahmadpour A, Seifkordi AA, Zebarjad SM (2012) Role of nano-sized TiO2 on mechanical and thermal behavior of starch/poly (vinyl alcohol) blend films. Int J Nanosci Nanotechnol 8:215–226

    Google Scholar 

  • Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49:950–956

    CAS  Google Scholar 

  • Hoover R, Hughes T, Chung HJ, Liu Q (2010) Composition, molecular structure, properties and modification of pulse starches: a review. Food Res Int 43:399–413

    CAS  Google Scholar 

  • Hotza D (1997) Colagem de Folhas Cerâmicas. Tape Casting Cerâmica 159–166

    Google Scholar 

  • Huneault MA, Li H (2012) Preparation and properties of extruded thermoplastic starch/polymer blends. J Appl Polym Sci 126:96–108

    Google Scholar 

  • Huang H, Yuan Q, Yang X (2004) Preparation and characterization of metal–chitosan nanocomposites. Colloid Surf B 39:31–37

    CAS  Google Scholar 

  • Huang Y-F, Lin Y-W, Chang H-T (2006) Growth of various Au-Ag nanocomposites from gold seeds in amino acid solutions. Nanotechnology 17:4885–4894

    CAS  Google Scholar 

  • Iman M, Maji TK (2012) Effect of crosslinker and nanoclay on starch and jute fabric based green nanocomposites. Carbohydr 89:290–297

    CAS  Google Scholar 

  • International Zinc Association-Zinc Oxide Information Center (2011). http://www.znoxide.org/index.html

  • Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P (2010) ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater Chem Phys 121:198–201

    CAS  Google Scholar 

  • Jane JL (2007) Structure of starch granules. J Appl Glycosci 54:31–36

    Google Scholar 

  • Janssen LPBM, Moscicki L, Mitrus M (2002) Energy aspects in food extrusion-cooking. Int Agrophys 16:191–195

    Google Scholar 

  • Jayakody L, Hoover R (2002) The effect of lintnerization on cereal starch granules. Food Res Int 35:665–680

    CAS  Google Scholar 

  • Jiménez A, Fabra MJ, Talens P, Chiralt A (2010) Effect of lipid self-association on the microstructure and physical properties of hydroxypropyl-methylcellulose edible films containing fatty acids. Carbohydr Polym 82:585–593

    Google Scholar 

  • Jiménez A, Fabra MJ, Talens P, Chiralt A (2013) Phase transitions in starch based films containing fatty acids. Effect on water sorption and mechanical behavior. Food Hydrocolloid 30:408–418

    Google Scholar 

  • Jin Z, Hsieh F, Huff HE (1994) Extrusion of corn meal with soy fiber, salt, and sugar. Cereal Chem 7:227–234

    Google Scholar 

  • Jindal UC (1986) Development and testing of bamboo–fibres reinforced plastic composites. J Compos Mater 20:19–29

    CAS  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2007) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76

    Google Scholar 

  • Kamat PV, Huehn R, Nicolaescu R (2002) A sense and shoot approach for photocatalytic degradation of organic contaminants in water. J Phys Chem B 106:788–794

    CAS  Google Scholar 

  • Kanehira K, Banzai T, Ogino C, Shimizu N, Kubota Y, Sonezaki S (2008) Properties of TiO2–polyacrylic acid dispersions with potential for molecular recognition. Colloid Surf B 64:10–15

    CAS  Google Scholar 

  • Kasemets K, Ivask A, Dubourguier H-C, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23:1116–1122

    CAS  Google Scholar 

  • Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345

    CAS  Google Scholar 

  • Khachatryan K, Khachatryan G, Fiedorowicz M, Para A, Tomasik P (2013) Formation of nanometal particles in the dialdehyde starch matrix. Colloid Surf B 102:578–584

    Google Scholar 

  • Kilbride BE, Coleman JN, Fournet P, Cadek M, Drury A, Blau WJ (2002) Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J Appl Phys 92:4024–4030

    CAS  Google Scholar 

  • Kim E, Jiang ZT, No K (2000) Measurement and calculation of optical band gap of chromium alumunium oxide films. Jpn J Appl Phys 39:4820–4825

    CAS  Google Scholar 

  • Kim H-S, Huber KC (2008) Channels within soft wheat starch A- and B-type granules. J Cereal Sci 48:159–172

    CAS  Google Scholar 

  • Kim J-Y, Lim S-T (2009) Preparation of nano-sized starch particles by complex formation with n-butanol. Carbohydr Polym 76:110–116

    CAS  Google Scholar 

  • Kim J-Y, Park D-J, Lim S-T (2008) Fragmentation of waxy rice starch granules by enzymatic hydrolysis. Cereal Chem 85:182–187

    CAS  Google Scholar 

  • Kim SJ, Shin BS, Hong JL, Cho WJ, Ha CS (2001) Reactive compatibilization of the PBT/EVA blend by maleic anhydride. Polymer 42:4073–4080

    CAS  Google Scholar 

  • Kitagawa K, Ishiaku US, Mizoguchi M, Hamada H (2005) Bamboo-based ecocomposites and their potential applications. In: Amar K, Misra MM, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton, Chapter 11

    Google Scholar 

  • Klingshirn C (2007a) ZnO: from basics towards applications. Phys Status Solidi B 244:3027–3073

    CAS  Google Scholar 

  • Klingshirn C (2007b) ZnO: material, physics and applications. Chem Phys Chem 8:782–803

    CAS  Google Scholar 

  • Koch K, Gillgren T, Stading M, Andersson R (2010) Mechanical and structural properties of solution-cast high-amylose maize starch films. Int J Biol Macromol 46:13–19

    CAS  Google Scholar 

  • Kondo M, Shinozaki K, Ooki R, Mizutani N (1994) Crystallization behavior and microstructure of hydrothermally treated monodispersed titanium dioxide particles. J Ceram Soc Jpn 102:742–746

    CAS  Google Scholar 

  • Kristo E, Biliaderis CG (2007) Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydr Polym 68:146–158

    CAS  Google Scholar 

  • Kvien I, Sugiyama J, Votrubec M, Oksman K (2007) Characterization of starch based nanocomposites. J Mater Sci 42:8163–8171

    CAS  Google Scholar 

  • Labet M, Thielemans W, Dufresne A (2007) Polymer grafting onto starch nanocrystals. Biomacromolecules 8:2916–2927

    CAS  Google Scholar 

  • Lagaly G (1986) Interaction of alkylamines with different types of layered compounds. Solid State Ionics 22:43–51

    CAS  Google Scholar 

  • Lamanna M, Morales NJ, García NL, Goyanes S (2013) Development and characterization of starch nanoparticles by gamma radiation: potential application as starch matrix filler. Carbohydr Polym 97:90–97

    CAS  Google Scholar 

  • Larotonda FDS (2007) Biodegradable films and coatings obtained from carrageenan from Mastocarpus stellatus and starch from Quercus suber, PhD Thesis, Universidade do Porto, Portugal, pp 136–140

    Google Scholar 

  • Lau HC, Hale AH, Bernardi Jr LA (1997) Drilling fluid. Patent H001685, US

    Google Scholar 

  • Le Corre D, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecules 11:1139–1153

    Google Scholar 

  • Le Corre D, Bras J, Dufresne A (2011) Ceramic membrane filtration for isolating starch nanocrystals. Carbohydr Polym 86:1565–1570

    Google Scholar 

  • Lee SY, Chun SJ, Kang IA, Park JY (2009) Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. J Ind Eng Chem 15:50–55

    Google Scholar 

  • Lelievre J (1974) Starch gelatinization. J Appl Polym Sci 18:293–296

    CAS  Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    CAS  Google Scholar 

  • Li XH, Xing YG, Li WL, Jiang YH, Ding YL (2010) Antibacterial and physical properties of poly(vinyl chloride)-based film coated with ZnO nanoparticles. Food Sci Technol Int 16:225–232

    CAS  Google Scholar 

  • Li M, Liu P, Zou W, Yu L, Xie F, Pu H, Liu H, Chen L (2011a) Extrusion processing and characterization of edible starch films with different amylose contents. J Food Eng 106:95–101

    CAS  Google Scholar 

  • Li R, Liu C, Ma J (2011b) Crystallinity in starch plastics: consequences for material properties. Carbohydr Polym 84:631–637

    CAS  Google Scholar 

  • Li L, Sun J, Li X, Zhang Y, Wang Z, Wang C, Dai J (2012) Controllable synthesis of monodispersed silver nanoparticles as standards for quantitative assessment of their cytotoxicity. Biomaterials 33:1714–1721

    CAS  Google Scholar 

  • Li XH, Gao X, Wang Y, Zhang X, Tong Z (2013) Comparison of chitosan/starch composite film properties before and after cross-linking. Int J Biol Macromol 52:275–279

    CAS  Google Scholar 

  • Liao HT, Wu CS (2008) New biodegradable blends prepared from polylactide, titanium tetraisopropylate, and starch. J Appl Polym Sci 108:2280–2289

    CAS  Google Scholar 

  • Liu Q (2005) Understanding starches and their role in foods. In: Cui SW (ed) Food carbohydrates: chemistry, physical properties and applications. CRC Press, Boca Raton, Chapter 7

    Google Scholar 

  • Liu X, Yu L, Liu H, Chen L, Li L (2008) In situ thermal decomposition of starch with constant moisture in a sealed system. Polym Degrad Stabil 93:260–262

    CAS  Google Scholar 

  • Liu D, Zhong T, Chang PR, Li K, Wu Q (2010) Starch composites reinforced by bamboo cellulosic crystals. Bioresour Technol 101:2529–2536

    CAS  Google Scholar 

  • Liu D, Chang PR, Deng S, Wang C, Zhang B, Tian Y, Huang S, Yao J, Ma X (2011) Fabrication and characterization of zirconium hydroxide-carboxymethyl cellulose sodium/plasticized Trichosanthes Kirilowii starch nanocomposites. Carbohydr Polym 86:1699–1704

    CAS  Google Scholar 

  • Liu Y, Kim H-I (2012) Characterization and antibacterial properties of genipin-crosslinked chitosan/poly(ethylene glycol)/ZnO/Ag nanocomposites. Carbohydr Polym 89:111–116

    CAS  Google Scholar 

  • Lin M-F, Thakur VK, Tan EJ, Lee PS (2011a) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504

    CAS  Google Scholar 

  • Lin M-F, Thakur VK, Tan EJ, Lee PS (2011b) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578

    CAS  Google Scholar 

  • Lloyd SM, Lave LB (2003) Life cycle economic and environmentals. Environ Sci Technol 37:3458–3466

    CAS  Google Scholar 

  • López O, García MA (2012) Starch films from a novel (Pachyrhizus ahipa) and conventional sources: development and characterization. Mater Sci Eng C 32:1931–1940

    Google Scholar 

  • López O, Zaritzky N, Grossmann M, García MA (2013) Acetylated and native corn starch blend films produced by blown extrusion. J Food Eng 116:286–329

    Google Scholar 

  • López O, Garcia MA, Villar MA, Gentili A, Rodriguez MS, Albertengo L (2014) Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT 57:106–115

    Google Scholar 

  • Lu CM, Zhang CYW, Tao MX (2002) Research of the effect of nanometer on germination and growth enhancement of Gly-cine max L. and its mechanism. Soybean Sci 21:168–172

    CAS  Google Scholar 

  • Lu Y, Tighzert L, Berzin F, Rondot S (2005) Innovative plasticized starch films modified with waterborne polyurethane from renewable sources. Carbohydr Polym 61:174–182

    CAS  Google Scholar 

  • Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites-reinforced plasticized starch biocomposites. Carbohydr Polym 63:198–204

    CAS  Google Scholar 

  • Lu C, Mai Y-W (2007) Permeability modelling of polymer-layered silicate nanocomposites. Compos Sci Technol 67:2895–2902

    CAS  Google Scholar 

  • Lu H, Gui Y, Zheng L, Liu X (2013) Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Res Int 50:112–121

    Google Scholar 

  • Ma X, Yu JG, Wang N (2008a) Glycerol plasticized-starch/multiwall carbon nanotube composites for electroactive polymers. Compos Sci Technol 68:268–273

    CAS  Google Scholar 

  • Ma X, Chang PR, Yu JG (2008b) Characterizations of glycerol plasticized starch (GPS)/carbon black (CB) membranes prepared by melt extrusion and microwave radiation. Carbohydr Polym 74:895–900

    CAS  Google Scholar 

  • Ma X, Jian R, Chang PR, Yu J (2008c) Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules 9:3314–3320

    CAS  Google Scholar 

  • Ma X, Chang PR, Yang J, Yu J (2009) Preparation and properties of glycerol plasticized-pea starch/zinc oxide-starch bionanocomposites. Carbohydr Polym 75:472–478

    CAS  Google Scholar 

  • Macanás J, Farre M, Muñoz M, Alegret S, Muraviev DN (2006) Preparation and characterization of polymer-stabilized metal nanoparticles for sensor applications. Phys Status Solidi A 203:1194–1200

    Google Scholar 

  • Magalhaes NF, Andrade CT (2009) Thermoplastic corn starch/clay hybrids: effect of clay type and content on physical properties. Carbohydr Polym 75:712–718

    CAS  Google Scholar 

  • Majdzadeh-Ardakani K, Navarchian A, Sadheghi F (2010) Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydr Polym 79:547–554

    CAS  Google Scholar 

  • Mali S, Grossmann M, Garcia M, Martino M, Zaritzky N (2005) Mechanical and thermal properties of yam starch films. Food Hydro 19:157–164

    CAS  Google Scholar 

  • Martinez-Bustos F, Viveros-Contreras R, Galicia-Garcia T, Nabeshima EH, Verdalet-Guzman I (2011) Some functional characteristics of extruded blends of fiber from sugarcane bagasse, whey protein concentrate, and corn starch. Ciênc Tecnol Aliment 31:870–878

    Google Scholar 

  • Martinez-Gutierrez F, Thi EP, Silverman J, de Oliveira CC, Svensson SL, Hoek AV, Sanchez EM, Reiner NE, Gaynor EC, Pryzdial ELG, Conway EM, Orrantia E, Ruiz F, Av-Gay Y, Bach H (2012) Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine 8:328–336

    CAS  Google Scholar 

  • Martins JT, Cerqueira MA, Vicente AA (2012) Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocolloid 27:220–227

    CAS  Google Scholar 

  • Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3:609–617

    CAS  Google Scholar 

  • Matsuda DKM, Verceheze AES, Carvalho GM, Yamashita F, Mali S (2013) Baked foams of cassava starch and organically modified nanoclays. Ind Crops Prod 44:705–711

    CAS  Google Scholar 

  • Mbey JA, Hoppe S, Thomas F (2012) Cassava starch–kaolinite composite film. Effect of clay content and clay modification on film properties. Carbohydr Polym 88:213–222

    CAS  Google Scholar 

  • Meskinfam M, Sadjadi MAS, Jazdarreh H, Zare K (2011) Biocompatibility evaluation of nano hydroxyapatite-starch biocomposites. J Biomed Nanotechnol 7:455–459

    CAS  Google Scholar 

  • Miao Z, Ding K, Wu T, Liu Z, Han B, An G, Miao S, Yang G (2008) Fabrication of 3D-networks of native starch and their application to produce porous inorganic oxide networks through a supercritical route. Microporous Mesoporous Mat 111:104–109

    CAS  Google Scholar 

  • Mitrus M, Moscicki L (2014) Extrusion-cooking of starch protective loose-fillfoams. Chem Eng Res Des 9:778–783

    Google Scholar 

  • Moad G (2011) Chemical modification of starch by reactive extrusion. Progr Polym Sci 36:218–237

    CAS  Google Scholar 

  • Moezzi A, McDonagh AM, Cortie MB (2012) Zinc oxide particles: synthesis, properties and applications. Chem Eng J 185–186:1–22

    Google Scholar 

  • Montoya IA, Viveros T, Dominguez JM, Canales LA, Shifter I (1992) On the effects of the sol-gel synthesis parameters on textural characteristics of TiO2. Catal Lett 15:207–217

    CAS  Google Scholar 

  • Moongngarm A (2013) Chemical compositions and resistant starch content in starchy foods. Am J Agr Biol Sci 8:107–113

    CAS  Google Scholar 

  • Mościcki L, van Zuilichem DJ (2011) Extrusion-cooking and related technique. In: Moscicki L (ed) Extrusion-cooking techniques: applications, theory and sustainability. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Mościcki L, Mitrus M, Wojtowicz A, Oniszczuk T, Rejak A, Janssen L (2012) Application of extrusion-cooking for processing of thermoplastic starch (TPS). Food Res Int 47:291–329

    Google Scholar 

  • Mościcki L, Mitrus M, Wojtowicz A, Oniszczuk T, Rejak A (2013) Extrusion-cooking of starch, advances in agrophysical research. In: Grundas S (ed) Tech doi: 10.5772/52323. http://www.intechopen.com/books/advances-in-agrophysical-research/extrusion-cooking-of-starch

  • Müller C, Laurindo J, Yamashita F (2011) Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Ind Crop Prod 33:605–610

    Google Scholar 

  • Müller C, Yamashita F, Laurindo J (2008) Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydr Polym 72:82–87

    Google Scholar 

  • Müller C, Laurindo J, Yamashita F (2009) Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloid 23:1328–1333

    Google Scholar 

  • Müller C, Laurindo J, Yamashita F (2012) Composites of thermoplastic starch and nanoclays produced by extrusion and thermopressing. Carbohydr Polym 89:504–510

    Google Scholar 

  • Muraviev DN, Macanás J, Esplandiu MJ, Farre M, Muñoz M, Alegret S (2007) Simple route for intermatrix synthesis of polymer stabilized core-shell metal nanoparticles for sensor applications. Phys Status Solidi A 204:1686–1692

    CAS  Google Scholar 

  • Murillo-Martínez MM, Pedroza-Islas R, Lobato-Calleros C, Martinez-Ferez A, Vernon-Carter EJ (2011) Designing W-1/O/W-2 double emulsions stabilized by protein-polysaccharide complexes for producing edible films: rheological, mechanical and water vapour properties. Food Hydrocolloid 25:577–585

    Google Scholar 

  • Murugadoss A, Chattopadhyay A (2008) A ‘green’ chitosan–silver nanoparti-cles composite as a heterogeneous as well as micro-heterogeneous catalyst. Nanotechnol 19:015603/1-015603/9

    Google Scholar 

  • Myllärinen P, Partanen R, Sepalla J, Forsell P (2002) Effect of glicerol on behavior of amylose and amylopectin films. Carbohydr Polym 50:355–361

    Google Scholar 

  • Nafchi AM, Alias AK, Mahmud S, Robal M (2012) Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. J Food Eng 113:511–519

    CAS  Google Scholar 

  • Nafchi AM, Nassiri R, Sheibani S, Ariffin F, Karim AA (2013) Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide. Carbohydr Polym 96:233–239

    CAS  Google Scholar 

  • Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanopariclesin colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663–12676

    CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    CAS  Google Scholar 

  • Norajit K, Kim MK, Ryu GH (2010) Comparative studies on the characterization and antioxidant properties of biodegradable alginate films containing ginseng extract. J Food Eng 98:377–384

    CAS  Google Scholar 

  • Norman TJ, Grant CD, Magana D, Zhang JZ, Liu J, Cao D, Bridges F, Buuren AV (2002) Near infrared optical absorption of gold nanoparticle aggregates. J Phys Chem B 106:7005–7012

    CAS  Google Scholar 

  • Nuryetti HH, Nasikin M (2012) Structure, energy band gap and electrical conductivity of Tapioca/metal oxide composite. J Eng Chem 6:911–919

    CAS  Google Scholar 

  • Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Comp Sci Tech 66:2776–2784

    CAS  Google Scholar 

  • Oliveira de Moraes J, Scheibe AS, Sereno A, Laurindo JB (2013) Scale-up of the production of cassava starch based films using tape-casting. J Food Eng 119:800–808

    CAS  Google Scholar 

  • Olsson E, Hedenqvist M, Johansson C, Järnström L (2013) Influence of citric acid and curing on moisture sorption, diffusion and permeability of starch films. Carbohydr Polym 94:765–772

    CAS  Google Scholar 

  • Orliac O, Rouilly A, Silvestre F, Rigal L (2003) Effects of various plasticizers on the mechanical properties, water resistance and aging of thermo-moulded films made from sunflower proteins. Ind Crop Prod 18:91–100

    CAS  Google Scholar 

  • Ozgur U, Ya IA, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301

    Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Google Scholar 

  • Pagnoulle C, Jerome R (2001) Particle-in-particle morphology for the dispersed phase formed in reactive compatibilization of SAN/EPDM blends. Polymer 42:1893–1906

    CAS  Google Scholar 

  • Pantani R, Gorrasi G, Vigliotta G, Murariu M, Dubois P (2013) PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur Polym J 49:3471–3482

    CAS  Google Scholar 

  • Pastor C, Sánchez-González L, Chiralt A, Cháfer M, González-Martínez C (2013) Physical and antioxidant properties of chitosan and methylcellulose based films containing resveratrol. Food Hydrocolloid 30:272–280

    CAS  Google Scholar 

  • Pelissari FM, Yamashita F, Garcia MA, Martino MN, Zaritzky NE, Grossmann MVE (2012) Constrained mixture design applied to the development of cassava starch–chitosan blown films. J Food Eng 108:262–267

    CAS  Google Scholar 

  • Pereda M, Amica G, Rácz I, Marcovich NE (2011) Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J Food Eng 103:76–83

    CAS  Google Scholar 

  • Pérez E, Segovia X, Tapia MA, Schroeder M (2012) Native and cross-linked modified Dioscorea trifida (cush-cush yam) starches as bio-matrices for edible films. J Cell Plast 48:545–556

    Google Scholar 

  • Petersson M, Stading M (2005) Water vapor permeability and mechanical properties of mixed starch-monoglyceride films and effect of film forming conditions. Food Hydrocolloid 19:123–132

    CAS  Google Scholar 

  • Piyada K, Waranyou S, Thawien W (2013) Mechanical, thermal and structural properties of rice starch films reinforced with rice starch nanocrystals. Int Food Res J 20:439–449

    CAS  Google Scholar 

  • Plattner BS, Wenger L, Rokey GJ (2011) Extruded, highly cooked, non-sticky starch products. Patent US 20110086150 A1. Application number US 12/829,948

    Google Scholar 

  • Polesi LF, Sarmiento SBS, dos Anjos CBP (2011) Composition and characterization of pea and chickpea starches. Braz J Food Technol 14:74–81

    CAS  Google Scholar 

  • Poole CP, Owens FJ (2003) Introduction to nanotechnology. Wiley, Chichester

    Google Scholar 

  • Prajapati VD, Jani GK, Moradiya NG, Randeria NP (2013) Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr Polym 92:1685–1699

    CAS  Google Scholar 

  • Ptaszek A, Lukasiewicz M, Bednarz S (2013) Environmental friendly polysaccharide modification—rheological properties of oxidized starches water systems. Starch Stärke 65:134–145

    CAS  Google Scholar 

  • Qiao R, Brinson LC (2009) Simulation of interphase percolation and gradients in polymer nanocomposites. Compos Sci Technol 69:491–499

    CAS  Google Scholar 

  • Rahman MAA, Mahmud S, Alias AK, Nor AFM (2013) Effect of nanorod zinc oxide on electrical and optical properties of starch-based polymer nanocomposites. J Phys Sci 24:17–28

    Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    CAS  Google Scholar 

  • Rajendra R, Balakumar C, Ahammed H, Jayakumar S, Vaideki K, Rajesh E (2010) Use of zinc oxide nano particles for production of antimicrobial textiles. Int J Eng Sci Technol 2:202–208

    Google Scholar 

  • Ratnayake WS, Jackson DS, Steve LT (2008) Starch gelatinization. Adv Food Nutr Res 55:221–268

    Google Scholar 

  • Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    CAS  Google Scholar 

  • Raybaudi-Massilia RM, Mosqueda-Melgar J, Soliva-Fortuny R, Martin-Belloso O (2009) Control of pathogenic and spoilage microorganisms in fresh-cut fruits and fruit juices by traditional and alternative natural antimicrobial. Comp Rev Food Sci F 8:157–180

    CAS  Google Scholar 

  • Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689

    CAS  Google Scholar 

  • Rhim JW, Wang LF, Hong SL (2013) Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloid 33:327–335

    CAS  Google Scholar 

  • Richard ME, Twiname ER (2000) Tape casting. In: American Ceramics Society, USA, Theory and Practice, p 293

    Google Scholar 

  • Rindlav-Westling A, Stading M, Gatenholm P (1998) Structure, barrier and mechanical properties of amylose and amylopectin films. Carbohydr Polym 36:217–224

    CAS  Google Scholar 

  • Roessler S, Zimmermann R, Scharnweber D, Werner C, Worch H (2002) Characterization of oxide layers on Ti6Al4V and titanium by streaming potential and streaming current measurements. Colloid Surf B 26:387–395

    CAS  Google Scholar 

  • Rojas-Graü MA, Avena-Bustillos RJ, Olsen C, Friedman M, Henika OR, Martín-Belloso O, Pan Z, McHugh TH (2007) Effects of plant essential oils and oils compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible films. J Food Eng 81:634–641

    Google Scholar 

  • Romero-Bastida CA, Bello-Pérez LA, García MA, Martino MN, Solorza-Feria J, Zarintzky NE (2005) Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydr Polym 60:235–244

    CAS  Google Scholar 

  • Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E (2003) Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr 133:4077–4082

    CAS  Google Scholar 

  • Rosin PM, Lajolo FM, Menezes EW (2002) Measurement and characterization of dietary starches. J Food Compos Anal 15:367–377

    CAS  Google Scholar 

  • Rubilar JF, Cruz RMS, Silva HD, Vicente AA, Khmelinskii I, Vieira MC (2013) Physico-mechanical properties of chitosan films with carvacrol and grape seed extract. J Food Eng 115:466–474

    CAS  Google Scholar 

  • Russell PL (1987) Gelatinisation of starches of different amylose/amylopectin content. A study by differential scanning calorimetry. J Cereal Sci 6:133–145

    CAS  Google Scholar 

  • Sadegh-Hassani F, Nafchi AM (2014) Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay. Int J Biol Macromol 67:446–458

    Google Scholar 

  • Salman H, Blazek J, Lopez-Rubio A, Gilbert EP, Hanley T, Copeland L (2009) Structure-function relationships in A and B granules from wheat starches of similar amylose content. Carbohydr Polym 75:420–427

    CAS  Google Scholar 

  • Sandhu KS, Singh N (2007) Some properties of corn starches II: physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chem 101:1499–1507

    CAS  Google Scholar 

  • Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44:5893–5899

    CAS  Google Scholar 

  • Sandstedt RM (1961) The function of starch in the baking of bread. Baker Dig 35:36–44

    Google Scholar 

  • Sanpui P, Murugadoss A, Prasad PVD, Ghosh SS, Chattopadhyay A (2008) The antibacterial properties of a novel chitosan–Ag-nanoparticle composite. Int J Food Microbiol 124:142–146

    CAS  Google Scholar 

  • Santiago-Silva P, Soares NFF, Nóbrega JE, Júnior MAW, Barbosa KBF, Volp ACP, Zerdas ERMA, Würlitzer NJ (2009) Antimicrobial efficiency of film incorporated with pediocin (ALTA®2351) on preservation of sliced ham. Food Control 20:85–89

    CAS  Google Scholar 

  • Sato E, Kohno M, Hamano H, Niwano Y (2006) Increased antioxidative potency of garlic by spontaneous short-term fermentation. Plant Foods Hum Nutr 61:157–160

    CAS  Google Scholar 

  • Sayanjali S, Ghanbarzadeh B, Ghiassifar S (2011) Evaluation of antimicrobial and physical properties of edible film based on carboxymethyl cellulose containing potassium sorbate on some mycotoxigenic Aspergillus species in fresh pistachios. LWT 44:1133–1138

    CAS  Google Scholar 

  • Sayyadnejad MA, Ghaffarian HR, Saeidi M (2008) Removal of hydrogen sulfide by zinc oxide nanoparticles in drilling fluid. Int J Environ Sci Technol 5:565–569

    CAS  Google Scholar 

  • Savadekar NR, Mhaske ST (2012) Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydr Polym 89:146–151

    CAS  Google Scholar 

  • Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Method 54:177–182

    CAS  Google Scholar 

  • Schiavello M (1997) Heterogeneous photocatalysis. Wiley, New York

    Google Scholar 

  • Schirmer BC, Heiberg R, Eie T, Moretro T, Maugesten T, Carlehog M, Langsrud S (2009) A novel packaging method with a dissolving CO2 headspace combined with organic acids prolongs the shelf life of fresh salmon. Int J Food Microbiol 133:154–160

    CAS  Google Scholar 

  • Schmid G, Simon U (2005) Gold nanoparticles: assembly and electrical properties in 1–3 dimensions. Chem Commun 6:697–710

    Google Scholar 

  • Schmid AH, Dolan KD, Ng PKW (2005) Effect of extruding wheat flour at lower temperatures on physical attributes of extrudates and on thiamin loss when using carbon dioxide gas as a puffing agent. Cereal Chem 82:305–313

    CAS  Google Scholar 

  • Seo SY, Lee GH, Lee SG, Jung SY, Lim JO, Choi JH (2012) Alginate-based composite sponge containing silver nanoparticles synthesized in situ. Carbohydr Polym 90:109–115

    CAS  Google Scholar 

  • Sepone N, Pelizzetti E (1989) Photocatalysis: fundamentals and applications. Wiley, New York

    Google Scholar 

  • Shanks R, Kong I (2012) Thermoplastic starch. In: El-Sonbati A (ed) Thermoplastic elastomers. http://www.intechopen.com/books/thermoplasticelastomers/thermoplastic-starch

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interfac 145:83–96

    CAS  Google Scholar 

  • Shelma R, Paul W, Sharma CP (2008) Chitin nanofibre reinforced thin chitosan films for wound healing application. Trends Biomater Artif Organs 22:107–115

    Google Scholar 

  • Shi L, Zhou J, Gunasekaran S (2008) Low temperature fabrication of ZnO-whey protein isolate nanocomposite. Mater Lett 62:4383–4385

    CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulosic bionanocomposites: a review of preparation and properties of nanocomposites. Biomacromolecules 10:425–432

    CAS  Google Scholar 

  • Sing P, Rhee HW, Tomar SK, Nagarale RK (2010) Ternary semiconductor nanoparticles embedded in PEO-polymer electrolyte matrix. J Thermoplast Compos 23:227–237

    Google Scholar 

  • Singh M, Singh S, Prasad S, Gambhir IS (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J Nanomater Biostruct 3:115–122

    Google Scholar 

  • Singha AS, Thakur VK (2008a) Saccaharum cilliare fiber reinforced polymer composites. Eur J Chem 5:782–791

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2008b) Effect of fibre loading on urea-formaldehyde matrix based green composites. Iran Polym J 17:861–873

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2009a) Fabrication and characterization of H. sabdariffa fiber-reinforced green polymer composites. Polym Plast Technol Eng 48:482–487

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2009b) Physical, chemical and mechanical properties of Hibiscus sabdariffa fiber/polymer composite. Int J Polym Mater 58:217–228

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2009c) Grewia optiva fiber reinforced novel, low cost polymer composites. J Chem 6:71–76

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2009d) Fabrication and characterization of S. cilliare fibre reinforced polymer composites. Bull Mater Sci 32:49–58

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2009e) Synthesis, characterisation and analysis of Hibiscus sabdariffa fibre reinforced polymer matrix based composites. Polym Polym Compos 17:189–194

    CAS  Google Scholar 

  • Singha AS, Thakur VK, Mehtac IK, Shama A, Khanna AJ, Rana RK, Rana AK (2009) Surface-modified Hibiscus sabdariffa fibers: physicochemical, thermal, and morphological properties evaluation. Int J Polym Anal Charact 14:695–711

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2010a) Mechanical, morphological, and thermal characterization of compression-molded polymer. Biocomposites 15:87–97

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2010b) Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J Reinf Plast Compos 29:700–709

    CAS  Google Scholar 

  • Slavutsky AM, Bertuzzi MA (2014) Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr Polym 110:53–61

    CAS  Google Scholar 

  • Son Y, Ahn KH, Char K (2000) Effect of processing conditions and reactive compatibilizer on the morphology of injection molded modified poly(phenylene oxide)/polyamide-6 blends. Polym Eng Sci 40:1385–1394

    CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study of E. coli as a model for gram-negative bacteria. J Colloid Interf Sci 275:177–182

    CAS  Google Scholar 

  • Song D, Thio YS, Deng Y (2011) Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohydr Polym 85:208–214

    CAS  Google Scholar 

  • Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bionanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95

    CAS  Google Scholar 

  • Souza AC, Goto GEO, Mainardi JA, Coelho ACV, Tadini CC (2013) Cassava starch composite films incorporated with cinnamon essential oil: antimicrobial activity, microstructure, mechanical and barrier properties. LWT 54:346–352

    CAS  Google Scholar 

  • Sreekumar PA, Al-Harthi MA, De SK (2012) Reinforcement of starch/polyvinyl alcohol blend using nano-titanium dioxide. J Compos Mater 46:3181–3187

    CAS  Google Scholar 

  • Stodolak E, Paluszkiewicz C, Bogun M, Blazewicz M (2009) Nanocomposite fibers for medical applications. J Mol Struct 924–926:208–213

    Google Scholar 

  • Sullivan JW, Johnson JA (1964) Measurement of starch gelatinization by enzyme susceptibility. Cereal Chem 41:73–77

    CAS  Google Scholar 

  • Suvakanta D, Narsimha MP, Pulak D, Joshabir C, Biswajit D (2014) Optimization and characterization of purified polysaccharide from Musa sapientum L as a pharmaceutical excipient. Food Chem 149:76–83

    CAS  Google Scholar 

  • Svegmark K, Helmersson K, Nilsson G, Nilsson P-O, Andersson R, Svensson E (2002) Comparison of potato amylopectin starches and potato starches: influence of year and variety. Carbohydr Polym 47:331–340

    CAS  Google Scholar 

  • Tajuddin S, Xie F, Nicholson TM, Liu P, Halley PJ (2011) Rheological properties of thermoplastic starch studied by multipass rheometer. Carbohydr Polym 83:914–919

    Google Scholar 

  • Takagi H, Takura R (2003) The manufacture and mechanical properties of composite boards made from starch-based biodegradable plastic and bamboo powder. J Soc Mater Sci 4:357–361

    Google Scholar 

  • Takagi H, Ichihara Y (2004) Effect of fiber length on mechanical properties of “green” composites using a starch-based resin and short bamboo fibers. JSME Int J Ser A 47:551–555

    Google Scholar 

  • Takeda C, Takeda Y, Hizukuri S (1989) Structure of amylomaize. Cereal Chem 66:22–25

    CAS  Google Scholar 

  • Talja RA, Helén H, Roos YH, Jouppila K (2007) Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydr Polym 67:288–297

    CAS  Google Scholar 

  • Tam KH, Djurisic AB, Chan CMN, Xi YY, Tse CW, Leung YH, Chan WK, Leung FCC (2008) Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films 516:6167–6174

    CAS  Google Scholar 

  • Tankhiwale R, Bajpai SK (2012) Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging. Colloid Surf B 90:16–20

    CAS  Google Scholar 

  • Teixeira EdM, Pasquini D, Curvelo AAS, Corradini E, Belgacem MN, Dufresne A (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78:422–431

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Mehta IK (2010a) Renewable resource-based green polymer composites: analysis and characterization. Int J Polym Anal Charact 15:137–146

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Kaur I, Nagarajarao RP, Liping Y (2010b) Silane functionalization of saccaharum cilliare fibers: Thermal, morphological, and physicochemical study. Int J Polym Anal Charact 15:397–414

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Misra N (2011) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122:532–544

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012a) In-air graft copolymerization of ethyl acrylate onto natural cellulosic polymers. Int J Polym Anal Charact 17:48–60

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012b) Graft Copolymerization of Methyl Acrylate onto Cellulosic Biofibers: Synthesis, Characterization and Applications. J Polym Environ 20:164–174

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012c) Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J Polym Environ 20:412–421

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012d) Modification of natural biomass by graft copolymerization. Int J Polym Anal Charact 17:547–555

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012e) Green composites from natural fibers: mechanical and chemical aging properties. Int J Polym Anal Charact 17:401–407

    CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014b) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014c) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    CAS  Google Scholar 

  • Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014a) Progress in green polymer composites from lignin for multifunctional applications: A Review. ACS Sustainable Chem Eng 2:1072–1092

    CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2014b) Review: Raw natural fiber–based polymer composites. Int J Polym Anal Charact 19:256–271

    CAS  Google Scholar 

  • Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014c) PMMA-g-SOY as a sustainable novel dielectric material. RSC Adv 4:18240–18249

    CAS  Google Scholar 

  • Thakur VK, Grewell D, Thunga M, Kessler MR (2014d) Novel Composites from Eco-Friendly Soy Flour/SBS Triblock Copolymer. Macromol Mater Eng 299:953–958

    CAS  Google Scholar 

  • Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014e) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677–6684

    CAS  Google Scholar 

  • Tharanathan RN (2003) Biodegradable films and composite coatings: Past, present and future. Trends Food Sci Technol 14:71–78

    CAS  Google Scholar 

  • Thunwall M, Kuthanová V, Boldizar A, Rigdahl M (2008) Film blowing of thermoplastic starch. Carbohydr Polym 71:583–590

    CAS  Google Scholar 

  • Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R Rep 53:73–97

    Google Scholar 

  • Torres-Castro A, González González VA, Navarro MG, González EG (2011) Síntesis de nanocompósitos de plata con almidón. Ingenierías XIV No 50

    Google Scholar 

  • Tripathi P, Dubey NK (2004) Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol Technol 32:235–245

    Google Scholar 

  • Tunç S, Duman O (2010) Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Appl Clay Sci 48:414–424

    Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Ung T, Liz-Marzan LM, Mulvaney P (2002) Gold nanoparticle. Thin Films Colloid Surf A 202:119–126

    CAS  Google Scholar 

  • Van der Maarel MJEC, Van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol 94:137–155

    Google Scholar 

  • Varaprasad K, Mohan IM, Ravindra S, Reddy NN, Vimala K, Monika K, Sreedhar B, Raju KM (2010) Hydrogel–silver nanoparticle composites: a new generation of antimicrobials. J Appl Polym Sci 115:1199–1207

    CAS  Google Scholar 

  • Vasanthan T, Bergthaller W, Driedger D, Yeung J, Sporns P (1999) Starch from Alberta potatoes: wet-isolation and some physicochemical properties. Food Res Int 32:355–365

    CAS  Google Scholar 

  • Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21:4433–4442

    Google Scholar 

  • Vazquez A, Cyras VP, Alvarez VA, Morán JI (2012) Starch/clay nano-biocomposites. In: Averous L, Pollet E (eds) Environmental silicate nano-biocomposites. Springer, London

    Google Scholar 

  • Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597–602

    CAS  Google Scholar 

  • Vergnes B, Berzin F (2010) Predicting starch transformation in twin screw extrusion. Society of Plastic Engineers. http://www.4spepro.org/view.php?article=002986-2010-06-22

  • Verran J, Sandoval G, Allen NS, Edge M, Stratton J (2007) Variables affecting the antibacterial properties of nano and pigmentary titania particles in suspension. Dyes Pigments 73:298–304

    CAS  Google Scholar 

  • Vicentini N, Sobral P, Cereda M (2002) The influence of the thickness on the functional properties of cassava starch edible films. Plant Biopolym Sci Food and Non-Food Appl 291–300

    Google Scholar 

  • Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47:254–263

    CAS  Google Scholar 

  • Viguié J, Molina-Boisseau S, Dufresne A (2007) Processing and characterization of waxy maize starch films plasticized by sorbitol and reinforced with starch nanocrystals. Macromol Biosci 7:1206–1216

    Google Scholar 

  • Wang H, Niu J, Long X, He Y (2008) Sonophotocatalytic degradation of methyl orange by nano-sized Ag/TiO2 particles in aqueous solutions. Ultrason Sonochem 15:386–392

    Google Scholar 

  • Wang H, Sun XZ, Seib P (2001) Trengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate. J Appl Polym Sci 82:1761–1767

    CAS  Google Scholar 

  • Wang ZL, Kong XY, Ding Y, Gao P, Hughes WL, Yang R, Zhang Y (2004) Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv Funct Mater 14:943–956

    CAS  Google Scholar 

  • Wang N, Maximiuk L, Toews R (2012) Pea starch noodles: effect of processing variables on characteristics and optimisation of twin-screw extrusion process. Food Chem 133:742–753

    CAS  Google Scholar 

  • Wang J, Cheng F, Zhu P (2014) Structure and properties of urea-plasticized starch films with different urea contents. Carbohydr Polym 101:1109–1115

    CAS  Google Scholar 

  • Wei C, Srivastava D, Cho K (2002) Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett 2:647–650

    CAS  Google Scholar 

  • Weibel A, Bouchet R, Knauth P (2006) Electrical properties and defect chemistry of anatase (TiO2). Solid State Ionics 177:229–236

    CAS  Google Scholar 

  • Wessels JM, Nothofer H, Ford WE, von Wrochem F, Scholz F, Vossmeyer T, Schroedter A, Weller H, Yasuda A (2004) Optical and electrical properties of three-dimensional interlinked gold nanoparticle assemblies. J Am Chem Soc 126:3349–3356

    CAS  Google Scholar 

  • Wiley B, Herricks T, Sun Y, Xia Y (2004) Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett 4:1733–1739

    CAS  Google Scholar 

  • Wiley B, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40:1067–1076

    CAS  Google Scholar 

  • Wilhelm H-M, Sierakowski M-R, Reicher F, Wypych F, Souza GP (2005) Dynamic rheological properties of Yam starch/hectorite composite gels. Polym Int 54:814–822

    CAS  Google Scholar 

  • Wollerdorfer M, Bader H (1998) Influence of natural fibres on the mechanical properties of biodegradable polymers. Ind Crop Prod 8:105–112

    CAS  Google Scholar 

  • Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K (2003) Physical interactions at carbon nanotube-polymer interfaces. Polymer 44:7757–7764

    CAS  Google Scholar 

  • Wonisch A, Polfer P, Kraft T, Dellert A, Heunisch A, Roosen A (2011) A comprehensive simulation scheme for tape casting: from flow behavior to anisotropy development. J Am Ceram Soc 94:2053–2060

    CAS  Google Scholar 

  • Woranucha S, Yoksana R (2013) Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging. Carbohydr Polym 96:586–592

    Google Scholar 

  • Wu M, Wang M, Ge M (2009) Investigation into the performance and mechanism of SiO2 nanoparticles and starch composite films. J Text I 100:254–259

    CAS  Google Scholar 

  • Xie J, Lee JY, Wang DIC, Ting IP (2007) Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1:429–439

    CAS  Google Scholar 

  • Xie F, Yu L, Liu H, Dean K (2006) Effect of compatibilizer distribution on thermal and rheological properties of gelatinized starch/biodegradable polyesters blends. Int Polym Proc 21:379–385

    Google Scholar 

  • Xie F, Halley PJ, Averous L (2011a) Bio-nanocomposites based on starch. In: Mittal V (ed) Nanocomposites with biodegradable polymers: synthesis, properties and future perspectives. Oxford University Press, Oxford, pp 234–260

    Google Scholar 

  • Xie Y, Chang PR, Wang S, Yu J, Ma X (2011b) Preparation and properties of halloysite nanotubes/plasticized Dioscorea opposite Thunb starch composites. Carbohydr Polym 83:186–191

    CAS  Google Scholar 

  • Xie F, Halley PJ, Averous L (2012) Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Prog Polym Sci 37:595–623

    CAS  Google Scholar 

  • Xie F, Liu P, Yu L (2014) Processing of plasticized starch-based materials: state of the art and perspectives. In: Halley P, Avérous L (eds) Starch polymers. From genetic engineering to green applications, 1st edn. Elsevier, Amsterdam, pp 257–289

    Google Scholar 

  • Yadav A, Prasad V, Kathe AA, Raj S, Yadav D, Sundarmoorthy C, Vigneshvaran N (2006) Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull Mater Sci 29:641–645

    CAS  Google Scholar 

  • Yan Q, Hou H, Guo P, Dong H (2012) Effects of extrusion and glycerol content on properties of oxidized and acetylated corn starch-based films. Carbohydr Polym 87:707–712

    CAS  Google Scholar 

  • Yoksan R, Chirachanchai S (2010) Silver nanoparticle-loaded chitosan–starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties. Mater Sci Eng C 30:891–897

    CAS  Google Scholar 

  • You S, Stevenson SG, Izydorczyk MS, Preston KR (2002) Separation and characterization of barley starch polymers by a flow field-flow fractionation technique in combination with multiangle light scattering and differential refractive index detection. Cereal Chem J 79:624–630

    CAS  Google Scholar 

  • Yu J, Ai F, Dufresne A, Gao S, Huang J, Chang PR (2008a) Structure and mechanical properties of poly(lactic acid) filled with (starch nanocrystal)-graft-poly(ε-caprolactone). Macromol Mater Eng 293:763–770

    CAS  Google Scholar 

  • Yu J, Wang N, Ma XF (2008b) Fabrication and characterization of poly(lactic acid)/acetyl tributyl citrate/carbon black as conductive polymer composites. Biomacromolecules 9:1050–1057

    CAS  Google Scholar 

  • Yu J, Yang J, Liu B, Ma X (2009) Preparation and characterization of glycerol plasticized-pea starch/ZnO-carboxymethylcellulose sodium nanocomposites. Bioresour Technol 100:2832–2841

    CAS  Google Scholar 

  • Yurdakul H, Durukan O, Seyhan AT, Celebi H, Oksuzoglu M, Turan S (2013) Microstructural characterization of corn starch-based porous thermoplastic composites filled with multiwalled carbon nanotubes. J App Polym Sci 127:812–820

    CAS  Google Scholar 

  • Yumin D, Zuyong X, Rong L (1997) Blend films of chitosan/starch. Wuhan Univ J Nat Sci 2:220–224

    Google Scholar 

  • Yun YH, Hwang KJ, Wee YJ, Yoon SD (2011) Synthesis, physical properties, and characterization of starch-based blend films by adding nano-sized TiO2/poly(methyl metacrylate-co-acrylamide). J Appl Polym Sci 120:1850–1858

    CAS  Google Scholar 

  • Yun YH, Youn YN, Yoon SD, Lee JU (2012) Preparation and physical properties of starch-based nanocomposite films with the addition of titanium oxide nanoparticles. J Ceram Process Res 13:59–64

    Google Scholar 

  • Zavareze E, Guerra Días A (2011) Impact of heat–moisture treatment and annealing in starches: a review. Carbohydr Polym 83:317–328

    CAS  Google Scholar 

  • Zepon KM, Vieira LF, Soldi V, Salmoria GV, Kanis LA (2013) Influence of process parameters on microstructure and mechanical properties of starch-cellulose acetate/silver sulfadiazine matrices prepared by melt extrusion. Polym Test 32:1123–1127

    CAS  Google Scholar 

  • Zeppa C, Gouanvé Espuche E (2009) Effect of a plasticizer on the structure of biodegradable starch/clay nanocomposites: thermal, water-sorption, and oxygen-barrier properties. J App Polym Sci 112:2044–2056

    CAS  Google Scholar 

  • Zhang L, Ding Y, Povey M, York D (2008) ZnO nanofluids: a potential antibacterial agent. Prog Nat Sci 18:939–944

    CAS  Google Scholar 

  • Zhang PP, Tong DS, Lin CX, Yang HM, Zhong ZK, Yu WH, Wang H, Zhou CH (2014) Effects of acid treatments on bamboo cellulose nanocrystals. Asia-Pacific J Chem doi:10.1002/apj.1812 (in press)

  • Zhao L, Wang H, Huo K, Cui L, Zhang W, Ni H, Zhang Y, Wu Z, Chu PK (2011) Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 32:5706–5716

    CAS  Google Scholar 

  • Zheng H, Ai F, Chang PR, Huang J, Dufresne A (2009) Structure and properties of starch nanocrystal-reinforced so y protein plastics. Polym Compos 30:474–480

    CAS  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 105:83–91

    Google Scholar 

  • Zhu L, Shukri R, de Mesa-Stonestreet NJ, Alavi S, Dogan H, Shi Y (2010) Mechanical and microstructural properties of soy protein: high amylose corn starch extrudates in relation to physiochemical changes of starch during extrusion. J Food Eng 100:232–238

    CAS  Google Scholar 

  • Zobel HF (1994) Starch granule structure. In: Alexander RJ, Zobel HF (eds) Developments in carbohydrate chemistry. The American Association of Cereal Chemists, St Paul Minnesota, pp 1–36

    Google Scholar 

  • Zuraida A, Yusliza Y, Anuar H, Mohd Khairul Muhaimin R (2012) The effect of water and citric acid on sago starch bio-plastics. Int Food Res J 19(2):715–719

    CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank the National Scientific and Technical Research Council of Argentina, CONICET (PIP 2013-2015, 11220120100508CO and 11220110100370CO), the University of Buenos Aires (UBACYT 2011-2014, 20020100100350 and 200220100100142, and UBACYT 2012-2015, 20020110200196), and ANPCyT (PICT-2012-1093 and PICT-2012-0717), for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. B. D’Accorso or S. Goyanes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

García, N.L., Famá, L., D’Accorso, N.B., Goyanes, S. (2015). Biodegradable Starch Nanocomposites. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 75. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2470-9_2

Download citation

Publish with us

Policies and ethics