Skip to main content

Abstract

The rumen microbial ecosystem comprises a diverse population of microorganisms, and the microbial diversity can be affected by many factors. Rumen bacteria are the predominant components of the rumen microbiota, which account for more than 95 % of the population of the entire rumen microbial community. This chapter will mainly focus on rumen bacteria and recent developments in understanding their roles and function using the molecular-based approaches as well as the potential implications in applying the knowledge about rumen bacteria in improving animal production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen AE, Vardi A, Bowler C (2006) An ecological and evolutionary context for integrated nitrogen metabolism and related signaling pathways in marine diatoms. Curr Opin Plant Biol 9:264–273

    CAS  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in-situ detection of individual microbial-cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aspinall GO (1970) Pectins, plant gums, and other plant polysaccharides. In: Pigman R, Heorton D (eds) The carbohydrates, vol 2B, 2nd edn. Academic, New York, pp 515–536

    Google Scholar 

  • Baker F, Harris ST (1947) The role of the microflora of the alimentary tract of herbivora with special reference to ruminants. 2. Microbial digestion in the rumen (and caecum) with special reference to the decomposition of structural cellulose. Nutr Abstr Rev 18:3–12

    Google Scholar 

  • Bauchop T, Clark RTJ, Newhook JC (1975) Scanning electron microscope study of bacteria associated with the rumen epithelium of sheep. Appl Microbiol 30:668–675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bergman EN (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70(2):567–590

    CAS  PubMed  Google Scholar 

  • Bevans DW, Beauchemin KA, Shwartzkopf-Genswein KS et al (2005) Effect of rapid or gradual grain adaptation on subacute acidosis and feed intake by feedlot cattle. J Anim Sci 83:1116–1132

    CAS  PubMed  Google Scholar 

  • Brulc JM, Antonopoulos DA, Miller ME et al (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci U S A 106:1948–1953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bryant MP (1959) Bacterial species of the rumen. Bact Rev 23:125–153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bryant MP (1972) Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clini Nutr 25:1324–1328

    CAS  Google Scholar 

  • Bryant MP (1986) Genus Ruminococcus. In: Sneath PHA, Mair NS, Sharpe ME et al (eds) Bergey's manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1093–1097

    Google Scholar 

  • Bryant MP, Small N (1956) Characteristics of two new genera of anaerobic curved rods isolated from the rumen of cattle. J Bacteriol 72:22–26

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bryant MP, Small N, Bouma C et al (1958a) Bacteroides ruminicola n.sp. and Succinimonas amylolytica the new genus and species. Species of succinic acid-producing anaerobic bacteria of the bovine rumen. J Bacteriol 76:15–23

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bryant MP, Small N, Bouma C et al (1958b) Studies on the composition of the ruminal flora and fauna of young calves. J Dairy Sci 41:1747–1767

    Google Scholar 

  • Cai L, Ye L, Tong AHY et al (2013) Biased diversity metrics revealed by bacterial 16s pyrotags derived from different primer sets. Plos One 8:e53649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chakravorty S, Helb D, Burday M et al (2007) A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 69:330–339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen M, Wolin MJ (1981) Influence of heme and vitamin B12 on growth and fermentations of Bacteroides species. J Bacteriol 145:466–471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Penner GB, Li M et al (2011) The epithelial tissue associated bacterial diversity changes in the rumen of beef cattle during dietary transition to high grain diets. Appl Environ Microbiol 77(16):5770–5781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Oba M, Guan LL (2012) Variation of bacterial communities and expression of Toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis. Vet Microbiol 159(3–4):451–459

    CAS  PubMed  Google Scholar 

  • Cheng KJ, Bailey CBM, Hironaka R et al (1979a) A technique for depletion of bacteria adherent to the epithelium of the bovine rumen. Can J Anim Sci 59:207–209

    Google Scholar 

  • Cheng KJ, McCowan RP, Costerton JW (1979b) Adherent epithelial bacteria in ruminants and their roles in digestive tract function. Am J Clin Nutr 32:139–148

    CAS  PubMed  Google Scholar 

  • Chesson A, Monro JA (1982) Legume pectic substances and their degradation in the ovine rumen. J Sci Food Agric 33:852–859

    CAS  Google Scholar 

  • Cho SJ, Cho KM, Shin EC et al (2006) 16S rDNA analysis of bacterial diversity in three fractions of cow rumen. J Microbiol Biotechnol 16:92–101

    CAS  Google Scholar 

  • Clarke RTJ, Bailey RW, Gaillard BDE (1969) Growth of rumen bacteria on plant cell wall polysaccharides. J Gen Microbiol 56:79–86

    CAS  Google Scholar 

  • Crater AR, Barboza PS, Forster RJ (2007) Regulation of rumen fermentation during seasonal fluctuations in food intake of muskoxen. Comp Biochem Physiol Part A 146:233–241

    Google Scholar 

  • Czerkawski JW (1986) An introduction to rumen studies. Pergamon Press, Oxford/New York

    Google Scholar 

  • Dehority BA (1966) Characterization of several bovine rumen bacteria isolated with a xylan medium. J Bacteriol 91:1724–1729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dehority BA (1973) Hemicellulose degradation by rumen bacteria. Fed Proc 32:1819–1825

    CAS  PubMed  Google Scholar 

  • Dehority BA (1986) Protozoa of the digestive tract of herbivorous mammals. Insect Sci Appl 7:279–296

    Google Scholar 

  • Dehority BA (2004a) Cellulose digesting rumen bacteria. In: Dehority BA (ed) Rumen microbiology. Nottingham University Press, Nottingham, pp 177–208

    Google Scholar 

  • Dehority BA (2004b) Species of rumen bacteria active in the fermentation of hemicellulose. In: Dehority BA (ed) Rumen microbiology. Nottingham University Press, Nottingham, pp 209–228

    Google Scholar 

  • Dehority BA (2004c) Pectin-fermenting species of rumen bacteria. In: Dehority BA (ed) Rumen microbiology. Nottingham University Press, Nottingham, pp 229–242

    Google Scholar 

  • Dehority BA (2004d) Starch digester, other less numerous species, and facultative anaerobes in the rumen. In: Dehority BA (ed) Rumen microbiology. Nottingham University Press, Nottingham, pp 243–264

    Google Scholar 

  • Dehority BA, Scott HW (1967) Characterization of the predominant bacteria occurring in the rumen of goats (Capra hircus). Appl Environ Microbiol 33:1030–1036

    Google Scholar 

  • Dehority BA, Tirabasso PA, Grifo JRAP (1989) Most-Probable-Number procedures for enumerating ruminal bacteria, including the simultaneous estimation of total and cellulolytic numbers in one medium. Appl Environ Microbiol 55:2789–2792

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards JE, McEwan NR, Travis AJ et al (2004) 16S rDNA library-based analysis of ruminal bacterial diversity. AVL Int J Gen Mol Microbiol 86(3):263–281

    CAS  Google Scholar 

  • Fay JP, Cheng KJ, Costerton JW (1979) Production of alkaline phosphatase by epithelial cells and adherent bacteria of the bovine rumen and abomasum. Can J Microbiol 25:932–936

    CAS  PubMed  Google Scholar 

  • Fonty G, Gouet PH, Jouany JP et al (1987) Establishment of the microflora and anaerobic fungi in the rumen of lambs. J Gen Microbiol 133:1835–1943

    Google Scholar 

  • Fonty G, Joblin K, Chavarot M et al (2007) Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs. Appl Environ Microbiol 73(20):6391–6403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Forster RJ, Whitford MF, Teather RM et al (1998) Investigation into rumen microbial diversity using molecular cloning and probing techniques. In: Ohmiya K, Hayashi K, Sakka K et al (eds) Genetics, biochemistry, and ecology of cellulose degradation. Sukuya, Japan, pp 571–581

    Google Scholar 

  • Grant RJ, Mertens DR (1992) Influence of buffer pH and raw corn starch addition on in vitro fiber digestion kinetics. J Dairy Sci 75:2762–2768

    CAS  PubMed  Google Scholar 

  • Guan LL, Nkrumah JD, Basarab JA et al (2008) Linkage of microbial ecology to phenotype: correlation of rumen microbial ecology to cattle’s feed efficiency. FEMS Microbiol Lett 288:85–91

    CAS  PubMed  Google Scholar 

  • Halliwell G, Bryant MP (1963) The cellulolytic activity of pure strains of bacteria from the rumen of cattle. J Gem Microbiol 32:441

    CAS  Google Scholar 

  • Hamlin LJ, Hungate RE (1956) Culture and physiology of a starch-digesting bacterium (Bacteroides amylophilus n. sp.) from the bovine rumen. J Bacteriol 72:548–554

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hernandez-Sanabria E, Guan LL, Goonewardene LA et al (2010) Correlation of particular bacterial PCR-denaturing gradient gel electrophoresis patterns with bovine ruminal fermentation parameters and feed efficiency traits. Appl Environ Microbiol 76:6338–6350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hernandez-Sanabria E, Goonewardene LA, Wang ZQ et al (2012) Impact of feed efficiency and diet on adaptive variations in the bacterial community in the rumen fluid of cattle. Appl Environ Microbiol 78:1203–1214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hernandez-Sanabria E, Goonewardene LA, Wang ZQ et al (2013) Influence of sire breed on the interplay among rumen microbial populations inhabiting the rumen liquid of the progeny in beef cattle. PLoS One 8:e58461

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hespell RB, Wolf R, Bothast RJ (1987) Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria. Appl Environ Microbiol 53:2849–2853

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hess M, Sczyrba A, Egan R et al (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467

    CAS  PubMed  Google Scholar 

  • Hook SE, Wright ADG, McBride BW (2010) Methanogens: methane producers of the rumen and mitigation strategies. Archaea 2010:945785

    PubMed Central  PubMed  Google Scholar 

  • Hoover WH (1986) Chemical factors involved in ruminal fiber digestion. J Dairy Sci 69:2755–2766

    CAS  PubMed  Google Scholar 

  • Howard BH, Jones G, Purdon MR (1960) The pentosanases of some rumen bacteria. Biochem J 74:173–180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hungate RE (1947) Studies on cellulose fermentation.III. the culture and isolation of cellulose-decomposing bacteria from the rumen of cattle. J Bacteriol 53:631–645

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hungate RE (1950) The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:1–49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hungate RE (1957) Microorganisms in the rumen of cattle fed a constant ration. Can J Microbiol 3(2):289–311

    CAS  PubMed  Google Scholar 

  • Hungate RE (1966) The rumen and its microbes. Academic, New York

    Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in Microbiology. Academic, New York, pp 117–132

    Google Scholar 

  • Jalaludin S, Ho YW, Abdullah N et al (1992) Rumen microorganisms of the water-buffalo. Buffalo J 3:211–220

    Google Scholar 

  • Jami E, Mizrahi I (2012) Similarity of the ruminal bacteria across individual lactating cows. Anaerobe 18(3):338–343

    CAS  PubMed  Google Scholar 

  • Jeyanathan J, Kirs M, Ronimus RS et al (2011) Methanogen community structure in the rumens of farmed sheep, cattle and red deer fed different diets. FEMS Microbiol Ecol 76:311–326

    CAS  PubMed  Google Scholar 

  • Juste A, Thomma BPHJ, Lievens B (2008) Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. Food Microbiol 25:745–761

    CAS  PubMed  Google Scholar 

  • Kaars-Sijpesteijn A (1951) Ruminococcus flavefaciens, a cellulose-decomposing bacterium from the rumen of sheep and cattle. J Gen Microb 5:869

    Google Scholar 

  • King EE, Smith RP, St-Pierre B et al (2011) Differences in the rumen methanogen populations of lactating Jersey and Holstein dairy cows under the same diet regimen. Appl Environ Microbiol 77:5682–5687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kittlemann S, Seedorf H, Walters WA et al (2013) Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. Plos One 8:e47879

    Google Scholar 

  • Kleen JL, Hooijer GA, Rehage J et al (2003) Subacute ruminal acidosis (SASA): a review. J Vet Med A Physiol Pathol Clinical Med 50:406–414

    CAS  Google Scholar 

  • Koike S, Yoshitani S, Kobayashi Y et al (2003) Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS Microbiol Lett 229:23–30

    CAS  PubMed  Google Scholar 

  • Kong YH, Teather R, Forster R (2010) Composition, spatial distribution, and diversity of the bacterial communities in the rumen of cows fed different forages. FEMS Microbiol Ecol 74(3):612–622

    CAS  PubMed  Google Scholar 

  • Krause DO, Russell JB (1996) An rRNA approach for assessing the role of obligate amino acid-fermenting bacteria in ruminal amino acid deamination. Appl Environ Microb 62(3):815–821

    CAS  Google Scholar 

  • Leahy SC, Kelly WJ, Ronimus RS et al (2013) Genome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies. Animal 7:235–243

    PubMed  Google Scholar 

  • Leedle JAZ, Hespell RB (1983) Brief incubations of mixed ruminal bacteria: effects of anaerobiosis and sources of nitrogen and carbon. J Dairy Sci 66:1003

    Google Scholar 

  • Li M, Penner GB, Hernandez-Sanabria E et al (2009) Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J Appl Microbiol 107(6):1924–1934

    CAS  PubMed  Google Scholar 

  • Li M, Zhou M, Adamowicz E et al (2012) Characterization of bovine ruminal epithelial bacterial communities using 16S rRNA sequencing, PCR-DGGE, and qRT-PCR analysis. Vet Microbiol 155(1):72–80

    CAS  PubMed  Google Scholar 

  • Li ZP, Liu HL, Li GY et al (2013) Molecular diversity of rumen bacterial communities from tannin-rich and fiber-rich forage fed domestic Sika deer (Cervus nippon) in China. BMC Microbiol 13:151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Macfarlane S, Dillon JF (2007) Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol 102:1187–1196

    CAS  PubMed  Google Scholar 

  • Mackie RI, Aminov RI, White BA et al (2000) Molecular ecology and diversity in gut microbial ecosystems. In: Cronjé PB (ed) Ruminant physiology: digestion, metabolism, growth and reproduction. CAB International, London, pp 61–77

    Google Scholar 

  • Malmuthuge N, Li MJ, Chen YH et al (2012) Distinct commensal bacteria associated with ingesta and mucosal epithelium in the gastrointestinal tracts of calves and chickens. FEMS Microbiol Ecol 79:337–347

    CAS  PubMed  Google Scholar 

  • Marounek M, DuÅ¡ková D (1999) Metabolism of pectin in rumen bacteria Butyrivibrio fibrisolvens and Prevotella ruminicola. Lett Appl Microbiol 29:429–433

    CAS  Google Scholar 

  • Marounek M, Bartos S, Brezina P (1985) Factors influencing the production of volatile fatty acids from hemicellulose, pectin and starch by mixed culture of rumen microorganisms. Z Tierphysiol Tierernahr Futtermittelkd 53:50–58

    CAS  Google Scholar 

  • Marston HB (1948) The fermentation of cellulose in vitro by organisms from the rumen of sheep. Biochem J 42:564–574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin C, Fonty G, Michalet-Doreau B (2002) Factors affecting the fibrolytic activity of the digestive microbial ecosystems in ruminants. In: Martin SA (ed) Gastrointestinal microbiology in animals. Research Signpost, Trivandrum, pp 1–17

    Google Scholar 

  • McAllister TA (2009) Learning more about rumen bugs: genetic and environmental factors affecting rumen bugs. Government of Alberta Agriculture and Rural Development. 2, Edmonton

    Google Scholar 

  • McAllister TA, Bae HD, Jones GA et al (1994) Microbial attachment and feed digestion in the rumen. J Anim Sci 72:3004–3018

    CAS  PubMed  Google Scholar 

  • McCowan RP, Cheng KJ, Bailey CBM et al (1978) Adhesion of bacteria to epithelial cell surfaces within the reticulo-rumen of cattle. Appl Environ Microbiol 35:149–155

    CAS  PubMed Central  PubMed  Google Scholar 

  • McEwan NR, Abecia L, Regensbogenova M et al (2005) Rumen microbial population dynamics in response to photoperiod. Lett Appl Microbiol 41(1):97–101

    CAS  PubMed  Google Scholar 

  • McSweeney CS, Blackall LL, Collins E et al (2005) Enrichment, isolation and characterisation of ruminal bacteria that degrade non-protein amino acids from the tropical legume Acacia angustissima. Anim Feed Sci Technol 121:191–204

    CAS  Google Scholar 

  • Miron J, Ben-Ghedalia D, Morrison M (2001) Adhesion mechanisms of rumen cellulolytic bacteria. J Dairy Sci 84:1294–1309

    CAS  PubMed  Google Scholar 

  • Mitsumori M, Ajisaka N, Tajima K et al (2002) Detection of Proteobacteria from the rumen by PCR using methanotroph-specific primers. Lett Appl Microb 35:251–255

    CAS  Google Scholar 

  • Mueller RE, Asplund JM, Iannotti EL (1984) Isolation and identification of adherent epimural bacteria during succession in young lambs. Appl Environ Microbiol 47:724–730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nadkarni MA, Marin FE, Jacques NA et al (2001) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148(1):257–266

    Google Scholar 

  • Nagaraja TG, Titgemeyer EC (2007) Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. J Dairy Sci 90:E17–E38

    PubMed  Google Scholar 

  • Nagaraja R, MacMillan S, Kere J et al (1997) X chromosome map at 75-kb STS resolution, revealing extremes of recombination and GC content. Genome Res 7:210–222

    Google Scholar 

  • Oliver CM, Schaefer A, Greenberg EP et al (2006) Novel phenacylhomoserine lactones: microwave synthesis and structure activity evaluation in bacteria and cancer. Acta Pharmacol Sin 27:54–55

    Google Scholar 

  • Olson KD (1992) Modified bottle plate for the cultivation of strict anaerobes. J Microbiol Methods 14:267–269

    Google Scholar 

  • Orpin CG, Mathiesen SD, Greenwood Y et al (1985) Seasonal changes in the ruminal microflora of the high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus). Appl Environ Microbiol 50:144–151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Osborne JM, Dehority BA (1989) Synergism in degradation and utilization of intact forage cellulose, hemicellulose, and pectin by three pure cultures of ruminal bacteria. Appl Environ Microbiol 55:2247–2250

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pearson H (1969) Rumen microbial ecology in mule deer. Appl Environ Microbiol 17:819-824

    Google Scholar 

  • Pei CX, Mao SY, Cheng YF et al (2010) Diversity, abundance and novel 16 s rRNA gene sequences of methanogens in rumen liquid, solid and epithelium fractions of Jinnan cattle. Animal 4:20–29

    CAS  PubMed  Google Scholar 

  • Penner GB, Oba M, Gabel G et al (2010) A single mild episode of subacute ruminal acidosis does not affect ruminal barrier function in the short term. J Dairy Sci 93:4838–4845

    CAS  PubMed  Google Scholar 

  • Petri RM, Schwaiger T, Penner GB et al (2013a) Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge. PLoS One 8(12):e83424

    PubMed Central  PubMed  Google Scholar 

  • Petri RM, Schwaiger T, Penner GB et al (2013b) Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis. Appl Environ Microbiol 79(12):3744–3755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pulido RG, Muñoz R, Lemarie P et al (2009) Impact of increasing grain feeding frequency on production of dairy cows grazing pasture. Livest Sci 125:109–114

    Google Scholar 

  • Purushe J, Fouts DE, Morrison M et al (2010) Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microb Ecol 60(4):721–729

    PubMed  Google Scholar 

  • Rode LM, Genthner BRS, Bryant MP (1981) Syntrophic association by cocultures of the methanol- and –CO2-H2-utilizing species Eubacterium limosum and pectin-fermenting Lachnospira multiparus during growth in a pectin medium. Appl Environ Microbiol 42:20–22

    Google Scholar 

  • Romero-Perez GA, Ominski KH, McAllister TA et al (2011) Effect of environmental factors and influence of rumen and hindgut biogeography on bacterial communities in steers. Appl Environ Microbiol 77(1):258–268

    CAS  PubMed Central  PubMed  Google Scholar 

  • Russell JB (2002) Rumen microbiology and its role in ruminant nutrition. In: Rumen microbiology and its role in ruminant nutrition, Ithaca, pp 1–121

    Google Scholar 

  • Russell JB, Dombrowski DB (1980) Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl Environ Microbiol 39:604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Russell JB, Garner MR, Flint JP (2002) Allisonella histiformans, sp. nov., a novel bacterium that produces histamine, utilizes histidine as its sole energy source, and could play a role in bovine and equine laminitis. Syst Appl Microbiol 25:498–506

    Google Scholar 

  • Rustomo B, Cant JP, Fan MP et al (2006a) Acidogenic value of feeds. I. the relationship between the acidogenic value of feeds and in vitro ruminal pH changes. J Anim Sci 86:109–117

    CAS  Google Scholar 

  • Rustomo B, Alzahal O, Odongo NE et al (2006b) Effects of rumen acid load from feed and forage particle size on ruminal pH and dry matter intake in the lactating dairy cow. J Dairy Sci 89:4758–4768

    CAS  PubMed  Google Scholar 

  • Rychlik R, Siedentop H, Pfeil T et al (2003) Cost-effectiveness of adjuvant treatment with acamprosate in maintaining abstinence in alcohol dependent patients. Eur Addict Res 9:59–64

    CAS  PubMed  Google Scholar 

  • Sadet S, Martin C, Meunier B et al (2007) PCR-DGGE analysis reveals a distinct diversity in the bacterial population attached to the rumen epithelium. Animal 1:939–944

    CAS  PubMed  Google Scholar 

  • Sadet-Bourgeteau S, Martin C, Morgavi DP (2010) Bacterial diversity dynamics in rumen epithelium of wethers fed forage and mixed concentrate forage diets. Vet Microbiol 146:98–104

    CAS  PubMed  Google Scholar 

  • Schwartzkopf-Genswein KS, Beauchemin KA, Gibb DJ et al (2003) Impact of bunk management on feeding behavior, ruminal acidosis and performance of feedlot cattle: a review. J Anim Sci 81(E. Suppl. 2): E149–E158

    Google Scholar 

  • Shah HN, Collins DM (1990) Prevotella, new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. Int J Syst Bacteriol 40:205–208

    CAS  PubMed  Google Scholar 

  • Sijpesteijn AK (1948) Cellulose decomposing bacteria from the rumen of cattle. PhD thesis, Rijksuniversiteit te Leiden

    Google Scholar 

  • Stewart CS, Bryant MP (1988) The rumen bacteria. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. Elsevier, Barking, Essex, p 21

    Google Scholar 

  • St-Pierre B, Wright A-DG (2012) Molecular analysis of methanogenic archaea in the forestomach of the alpaca (Vicugna pacos) reveals differences in population structure between individual hosts. BMC Microb 12:1

    CAS  Google Scholar 

  • Strobel HJ (1992) Vitamin B12-dependent propionate production by the ruminal bacterium Prevotella ruminicola 23. Appl Environ Microbiol 58:2331–2333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun XZ, Joblin KN, Andrew IG et al (2008) Degradation of forage chicory by ruminal fibrolytic bacteria. J Appl Microbiol 105(5):1286–1297

    CAS  PubMed  Google Scholar 

  • Sundset MA, Præsteng KE, Cann IKO et al (2007) Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microbial Ecol 54:424–438

    Google Scholar 

  • Tajima K, Aminov RI, Nagamine T et al (1999) Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol Ecol 29:159–169

    CAS  Google Scholar 

  • Tajima K, Aminov RI, Nagamine T et al (2001) Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl Environ Microbiol 67:2766–2774

    Google Scholar 

  • Tamate H, Kikuchi T, Onodera A et al (1971) Scanning electron microscopic observation on the surface of the bovine rumen mucosa. Arch Histol Jpn 33:273

    CAS  PubMed  Google Scholar 

  • Tanner RS, Wolfe RS (1988) Nutritional requirements of Methanomicrobium mobile. Appl Environ Microbiol 54:625–628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uyeno Y, Sekiguchi Y, Kamagata Y (2010) rRNA-based analysis to monitor succession of faecal bacterial communities in Holstein calves. Lett Appl Microbiol 51:570–577

    CAS  PubMed  Google Scholar 

  • Van Gylswky NO, Van der Toorn JJTK (1986) Enumeration of Bacteroides succinogenes in the rumen of sheep fed maize-straw diets. FEMS Microbiol Ecol 38:205–209

    Google Scholar 

  • Van Soest PJ (1983) Nutritional ecology of the ruminant. Cornell University/O & B Books, Ithaca

    Google Scholar 

  • Varel VH, Dehority BA (1989) Ruminal cellulolytic bacteria and protozoa from bison, cattle-bison hybrids, and cattle fed three alfalfa-corn diets. Appl Environ Microbiol 55(1):148–153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Von Tappeiner H (1884) Untersuchungen über die gärung der cellulose insbesondere über deren lösung in darmkanale. Z Biol 20:52–134

    Google Scholar 

  • Waite R, Gorrod ARN (1959) The comprehensive analysis of grasses. J Sci Food Agri 10(6):317–326

    CAS  Google Scholar 

  • Walker ND, Newbold CJ, Wallace RJ (2005) Nitrogen metabolism in the rumen. In: Pfeffer E, Hristov A (eds) Nitrogen and phosphorus nutrition of cattle. CABI Publishing, Cambridge, pp 71–115

    Google Scholar 

  • Wallace RJ, Cheng K-J, Dinsdale D et al (1979) An independent microbial flora of the epithelium and its role in the ecomicrobiology of the rumen. Nature 279:424–426

    CAS  PubMed  Google Scholar 

  • Weimer PJ, Stevenson DM, Mertens DR (2010) Shifts in bacterial community composition in the rumen of lactating dairy cows under milk fat-depressing conditions. J Dairy Sci 93:265–278

    CAS  PubMed  Google Scholar 

  • Welkie DG, Stevenson DM, Weimer PJ (2010) ARISA analysis of ruminal bacterial community dynamics in lactating dairy cows during a feeding cycle. Anaerobe 16:94–100

    CAS  PubMed  Google Scholar 

  • Whitford MF, Forster RJ, Beard CE (1998) Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4:153–163

    CAS  PubMed  Google Scholar 

  • Zened A, Combes S, Cauquil L et al (2013) Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets. FEMS Microbiol Ecol 83:504–514

    CAS  PubMed  Google Scholar 

  • Zhou M, Hernandez-Sanabria E, Guan LL (2009) Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl Environ Microbiol 75(20):6524–6533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou M, Hernandez-Sanabria E, Guan LL (2010) Characterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysis. Appl Environ Microbiol 76(12):3776–3786

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou M, Hünerberg M, Beauchemin KA et al (2013) Individuality of Ruminal methanogen/protozoa populations in beef cattle fed diets containing dried distillers’ grain with solubles. Acta Agri Scand Sect A Anim Sci 62(4):273–288

    Google Scholar 

  • Zoetendal EG, Smith AH, Sundset MA (2008) The BaeSR two-component regulatory system mediates resistance to condensed tannins in Escherichia coli. Appl Environ Microbiol 74:535–539

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Guan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Zhou, M., Chen, Y., Guan, L.L. (2015). Rumen Bacteria. In: Puniya, A., Singh, R., Kamra, D. (eds) Rumen Microbiology: From Evolution to Revolution. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2401-3_6

Download citation

Publish with us

Policies and ethics