Skip to main content

‘Omics’ Approaches to Understand and Manipulate Rumen Microbial Function

  • Chapter
Rumen Microbiology: From Evolution to Revolution

Abstract

Diverse populations of rumen microorganisms in gut contribute to develop ability of breaking down fibrous foods, which are mostly unusable by humans (Owens FN, Goetsch AL (1988) Ruminal fermentation. In: Church DC (ed) The ruminant animal, digestive physiology and nutrition. Prentice-Hall, Englewood Cliffs, p 160). Rumen is having a larger population of microorganisms, more than a trillion organisms and wide diversity (hundreds of species and thousands of subspecies), per ounce of rumen contents (Xu et al., J Anim Sci 85:1024–1029, 2007). There are various traditional approaches through which overall performance of the rumen has been attempted to improve, e.g. plant secondary metabolites, microbial feed additives, chemical feed additives, selective stimulation of beneficial rumen microbes and selective inhibition of harmful rumen microbes. In spite of these, nowadays various new approaches are being used to improve our understanding of the relationships among the various rumen microorganisms and towards how they interact with their hosts (Chaucheyras-Durand and Ossa, Prof Anim Sci 30:1–12, 2014). To better characterize species in the rumen, new advanced technological aids such as gene sequencing and study of gene (genomics), protein (proteomics) and metabolite (metabolomics) expression are being frequently used. This chapter will majorly emphasize on recent tools used in exploring the diversity of rumen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ametaj BN, Zebeli Q, Saleem F et al (2010) Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows. Metabolomics 6:583–594

    Article  CAS  Google Scholar 

  • Bond JJ, Dunne JC, Kwan FYS et al (2012) Carbohydrate transporting membrane proteins of the rumen bacterium, Butyrivibrio proteoclasticus. J Proteomics 75:3138–3144

    Article  CAS  PubMed  Google Scholar 

  • Chaucheyras-Durand F, Ossa F (2014) The rumen microbiome: composition, abundance, diversity, and new investigative tools. Prof Anim Sci 30:1–12

    Google Scholar 

  • Ciric M, Moon DC, Leahy LC et al (2014) Metasecretome-selective phage display approach for mining the functional potential of a rumen microbial community. BMC Genomics 15:356

    Article  PubMed Central  PubMed  Google Scholar 

  • Collado MC, Sanz Y (2007a) Quantification of mucosa-adhered microbiota of lambs and calves by the use of culture methods and fluorescent in situ hybridization coupled with flow cytometry techniques. Vet Microbiol 121:299–306

    Article  CAS  PubMed  Google Scholar 

  • Collado MC, Sanz Y (2007b) Characterization of the gastrointestinal mucosa associated microbiota of pigs and chickens using culture-based and molecular methodologies. J Food Prot 70:2799–2804

    CAS  PubMed  Google Scholar 

  • Collado MC, Isolauri E, Laitinen K et al (2008) Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 88:894–899

    CAS  PubMed  Google Scholar 

  • Dunne JC, Li D, Kelly WJ et al (2012) Extracellular polysaccharide-degrading proteome of Butyrivibrio proteoclasticus. J Proteome Res 11(1):131–142

    Article  CAS  PubMed  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed Central  PubMed  Google Scholar 

  • Gong J, Yang C (2012) Advances in the methods for studying gut microbiota and their relevance to the research of dietary fiber functions. Food Res Int 48:916–929

    Article  CAS  Google Scholar 

  • Habib G, Raza M, Saleem M (2008) Effect of tree leaves with or without urea as a feed supplement on nutrient digestion and nitrogen balance in sheep. Anim Feed Sci Technol 144:335–343

    Article  CAS  Google Scholar 

  • Holligan S, Wang J, Cant JP et al (2013) A proteomics approach to detect tissue-wide adaptive changes in the pancreas associated with increased pancreatic α-amylase activity in domestic cattle (Bos taurus). Comp Biochem Physiol Part D Genomics Proteomics 8:65–71

    Article  CAS  PubMed  Google Scholar 

  • Jami E, Mizrahi I (2012) Composition and similarity of bovine rumen microbiota across individual animals. PLoS One 7(3):e33306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jayasri K, Padmaja K, Prasad PE (2014) Proteomics in animal health and production. IOSR J Agric Vet Sci 7:50–56

    Article  Google Scholar 

  • Jiang Y, Xie M, Chen W et al (2014) The sheep genome illuminates biology of the rumen and lipid metabolism. Science (New York, NY) 344:1168–1173

    Article  CAS  Google Scholar 

  • Kudva IT, Stanton TB, Lippolis JD (2014) The Escherichia coli O157:H7 bovine rumen fluid proteome reflects adaptive bacterial responses. BMC Microbiol 14:48

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee JW, Lee SY (2009) Proteome-based physiological analysis of the metabolically engineered succinic acid producer Mannheimia succiniciproducens LPK7. Bioprocess Biosyst Eng. doi:10.1007/s00449-009-0339-4

    Google Scholar 

  • Lee SJ, Song H, Lee SY (2006) Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol 72:1939–1948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li M, Gong J, Cottrill M et al (2003) Evaluation of QIAamp® DNA Stool Mini Kit for ecological studies of gut microbiota. J Microbiol Methods 54:13–20

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhao H, Yang P et al (2013) Comparative quantitative analysis of gene expression profiles of glycoside hydrolase family 10 xylanases in the sheep rumen during a feeding cycle. Appl Environ Microbiol 79:1212–1220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang M-Y, Hou X-M, Qu B et al (2014) Functional analysis of FABP3 in the milk fat synthesis signaling pathway of dairy cow mammary epithelial cells. In Vitro Cell Dev Biol Anim. doi:10.1007/s11626-014-9780-z

    Google Scholar 

  • Mohammadzadeh H, Yáñez-Ruiz DR, Martínez-Fernandez G et al (2014) Molecular comparative assessment of the microbial ecosystem in rumen and faeces of goats fed alfalfa hay alone or combined with oats. Anaerobe 29:52–58

    Article  CAS  PubMed  Google Scholar 

  • Paliy O, Kenche H, Abernathy F et al (2009) High-throughput quantitative analysis of the human intestinal microbiota with a phylogenetic microarray. Appl Environ Microbiol 75:3572–3579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palma DG, Nadal I, Collado MC et al (2009) Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br J Nutr 102:1154–1160

    Article  PubMed  Google Scholar 

  • Palmer C, Bik EM, DiGiulio DB et al (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177

    Article  PubMed Central  PubMed  Google Scholar 

  • Rajilic-Stojanovic M, Maathuis A, Heilig HGHJ et al (2010) Evaluating the microbial diversity of an in vitro model of the human large intestine by phylogenetic microarray analysis. Microbiology 156:3270–3281

    Article  CAS  PubMed  Google Scholar 

  • Saleem F, Ametaj BN, Bouatra S et al (2012) A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. J Dairy Sci 95:6606–6623

    Article  CAS  PubMed  Google Scholar 

  • Sekhavati MH, Mesgaran MD, Nassiri MR et al (2009) Development and use of quantitative competitive PCR assays for relative quantifying rumen anaerobic fungal population s in both in vitro and in vivo systems. Mycol Res 113:1146–1153

    Article  CAS  PubMed  Google Scholar 

  • Sidi-Boumedine K, Ellis RJ, Adam G et al (2014) Draft genome sequences of six ruminant Coxiella burnetii isolates of European origin. Genome Announc 2:e00285-14. doi:10.1128/genomeA. 00285-14

    Article  PubMed Central  PubMed  Google Scholar 

  • Snel J, Harmssen HJM, van der Wielen PWJJ et al (2002) Dietary strategies to influence the gastrointestinal microflora of young animals, and its potential to improve intestinal health. In: Blok MC et al (eds) Nutrition and health of the gastrointestinal tract. Wageningen Academic Publishers, Wageningen, pp 37–69

    Google Scholar 

  • Teather RM (1985) Application of gene manipulation to rumen microflora. Can J Anim Sci 65:563–574

    Article  CAS  Google Scholar 

  • Vinayavekhin N, Homan EA, Saghatelian A (2010) Exploring disease through metabolomics. J Agric Food Chem 5:91–103

    CAS  Google Scholar 

  • Wang T-Y, Chen H-L, Lu M-Y J et al (2011) Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses. Biotechnol Biofuel 4:24

    Article  CAS  Google Scholar 

  • Wang et al (2012) Effects of dietary composition on the rumen papillae tissue proteome of cows by the combination of two-dimensional gel electrophoresis and mass spectrometry. J Agri Biotechnol 20:1042–1047. ISSN 1674–7968 CN: 11-3342/S

    Google Scholar 

  • Wang LF, Yang GY, Yang GQ et al (2014) Effect of zinc source on the expression of ZIPII transporter genes in Guanzhong dairy goats. Anim Feed Sci Technol. http://dx.doi.org/10.1016/j.anifeedsci.2014.06.006

  • Wishart DS, Lewis MJ, Morrissey JA et al (2008) The human cerebrospinal fluid metabolome. J Chromatogr B Anal Technol Biomed Life Sci 871:164–173

    Article  CAS  Google Scholar 

  • Yang Y, Wang J, Yuan T et al (2013) Proteome profile of bovine ruminal epithelial tissue based on GeLC–MS/MS. Biotechnol Lett 35:1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Bu D, Sun P et al (2014) Metabolomics analysis reveals large effect of roughage types on rumen microbial metabolic profile in dairy cows. Lett Appl Microbiol 59:79–85

    Article  CAS  PubMed  Google Scholar 

  • Zoetendal EG, Collier CT, Koike S et al (2004) Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 134:65–472

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhuvnesh Shrivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Shrivastava, B. et al. (2015). ‘Omics’ Approaches to Understand and Manipulate Rumen Microbial Function. In: Puniya, A., Singh, R., Kamra, D. (eds) Rumen Microbiology: From Evolution to Revolution. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2401-3_15

Download citation

Publish with us

Policies and ethics