Skip to main content

Genetic Markers, Trait Mapping and Marker-Assisted Selection in Plant Breeding

  • Chapter
Plant Biology and Biotechnology

Abstract

Genetic markers have long been used for characterization of plant genetic diversity and exploitation in crop improvement. The advent of DNA marker technology (during 1980s) has revolutionized crop breeding research as it has enabled the breeding of elite cultivars with targeted selection of desirable gene or gene combinations in breeding programmes. DNA markers are considered better over traditional morphology and protein-based markers because they are abundant, neutral, reliable, convenient to automate and cost-effective. Over the years, DNA marker technology has matured from restriction based to PCR based to sequence based and to eventually the sequence itself with the emergence of novel genome sequencing technologies. Trait mapping has been the foremost application of molecular markers in plant breeding. Genomic locations of numerous genes or quantitative trait loci (QTLs) associated with agronomically important traits have been determined in several crop plants using linkage or association mapping approaches. Plant breeders always look for an easy, rapid and reliable method of selection of desirable plants in breeding populations. Conventionally, desirable plants are selected based on phenotypic observations. The phenotypic selection for complex agronomic traits is difficult, unpredictable and challenging. Once the marker-trait association is correctly established, the gene- or QTL-linked markers can be used to select plants carrying desirable traits, the process called marker-assisted selection (MAS). Marker-assisted backcrossing (MABC) has been widely used for transferring single major gene or combination of major genes into the background of elite cultivar; the process refers to gene pyramiding. Marker-assisted recurrent selection (MARS) and genome-wide association analysis (GWA) are considered potential MAS strategies for improvement of complex traits but still remain as theoretical possibilities in plant breeding. Though molecular markers and MAS have promises for improved plant breeding process, the marker-trait associations or QTLs are statistical associations, which are influenced by several factors such as trait heritability, phenotyping methods, marker density, population type and other experimental conditions that might lead to false positives. Therefore, a cautiously optimistic approach is necessary to consider MAS in crop breeding programmes. In this chapter, the potentials of genetic markers in plant breeding are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MD, Kelley JM, Gocayne JD, Dubrick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie WR, Venter JC (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252:1651–1656

    CAS  PubMed  Google Scholar 

  • Akkaya MS, Bhagwat AA, Cregan PB (1992) Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132:1131–1139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akopyanz N, Bukanov NO, Westblom TU, Berg DE (1992) PCR-based RFLP analysis of DNA sequence diversity in the gastric pathogen Helicobacter pylori. Nucl Acid Res 20:6221–6225

    CAS  Google Scholar 

  • Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    CAS  PubMed  Google Scholar 

  • Arunachalam V, Chandrashekaran S (1993) RFLP approach to breeding for quantitative traits in plants – a critique. J Genet 72:73–83

    Google Scholar 

  • Bagge M, Lubberstedt T (2008) Functional markers in wheat: technical and economic aspects. Mol Breed 22:319–328

    Google Scholar 

  • Barton H, Keightley PD (2002) Understanding quantitative genetic variation. Nat Rev 3:11–21

    CAS  Google Scholar 

  • Bebeli PJ, Zhou Z, Somers DJ, Gustafson JP (1997) PCR primed with mini satellite core sequences yields DNA fingerprinting probes in wheat. Theor Appl Genet 95:276–283

    CAS  Google Scholar 

  • Beckmann JS (1988) Oligonucleotide polymorphisms: a new tool for genomic genetics. Biotechnology 6:161–164

    Google Scholar 

  • Beckmann JS, Soller M (1990) Toward a unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite sites. Biotechnology 8:930–932

    CAS  PubMed  Google Scholar 

  • Bernardo R, Charcosset A (2006) Usefulness of gene information in marker-assisted recurrent selection: a simulation appraisal. Crop Sci 46:614–621

    Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genome wide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    CAS  PubMed  Google Scholar 

  • Brow MAD, Oldenburg MC, Lyamichev V, Heisler LM, Lyamicheva N, Hall JG, Eagan NJ, Olive DM, Smith LM, Fors L, Dahlberg JE (1996) Differentiation of bacterial 16S rRNA genes and intergenic regions and Mycobacterium tuberculosis katG genes by structure-specific endonuclease cleavage. J Clin Microbiol 34:3129–3137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brumlop S, Finckh MR (2011) Applications and potentials of marker assisted selection (MAS) in plant breeding. Final report of the F+E project “Applications and Potentials of Smart Breeding” (FKZ 350 889 0020). Federal Agency for Nature Conservation, Bonn, p 131

    Google Scholar 

  • Caetano-Anolles G, Bassam BJ, Gresshoff PM (1991) DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Biotechnology 9:553–557

    CAS  PubMed  Google Scholar 

  • Caetano-Anolles G, Bassam BJ, Gresshoff PM (1993) Enhanced detection of polymorphic DNA by multiple arbitrary amplicons profiling of endonuclease digested DNA: identification of markers linked to the supernodulation locus in soybean. Mol Gen Genet 241:57–64

    CAS  PubMed  Google Scholar 

  • Casa AM, Brouwer C, Nagel A, Wang L, Zhang Q, Kresovich S, Wessler SR (2000) The MITE family heartbreaker (Hbr): molecular markers in maize. Proc Natl Acad Sci U S A 97:10083–10089

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221

    PubMed  Google Scholar 

  • Chang RY, O’Donoughue LS, Bureau TE (2001) Inter-MITE polymorphisms (IMP): a high throughput transposon-based genome mapping and fingerprinting approach. Theor Appl Genet 102:773–781

    CAS  Google Scholar 

  • Chin JH, Gamuyao R, Dalid C, Bustamam M, Prasetiyono J, Moeljopawiro S, Wissuwa M, Heuer S (2011) Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiol 156:1202–1216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chu Y, Wu CL, Holbrook CC, Tillman BL, Person G, Ozias-Akins P (2011) Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome 4:110–117

    CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collard BCY, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep 27:86–93

    CAS  Google Scholar 

  • Cuc LM, Huyen LTN, Hien PTM, Hang VTT, Dam NQ, Mui PT, Quang VD, Ismail AM, Ham LH (2012) Application of marker assisted backcrossing to introgress the submergence tolerance QTL SUB1 into the Vietnam elite rice variety-AS996. Am J Plant Sci 3:528–536

    CAS  Google Scholar 

  • Damerval C, Maurice A, Josse JM, de Vienne D (1994) Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137:289–301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3:22–32

    CAS  PubMed  Google Scholar 

  • Delannay X, McLaren G, Ribaut JM (2011) Fostering molecular breeding in developing countries. Mol Breed 29:857–873

    Google Scholar 

  • Dietrich W, Katz H, Lincoln SE, Shin HS, Friedman J, Dracopoli NC, Lander ES (1992) A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131:423–447

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doerge RW, Zeng ZB, Weir BS (1997) Statistical issues in the search for genes affecting quantitative traits in experimental populations. Stat Sci 12:19–219

    Google Scholar 

  • Eathington SR, Crosbie TM, Edwards MD, Reiter RS, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47:154–163

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flavell AJ, Knox MR, Pearce SR, Ellis THN (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–650

    CAS  PubMed  Google Scholar 

  • Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E, Vale G (2005) Marker assisted selection in crop plants. Plant Cell Tiss Org Cult 82:317–342

    CAS  Google Scholar 

  • Frisch M, Bohn M, Melchinger AE (1999a) Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39:1295–1301

    Google Scholar 

  • Frisch M, Bohn M, Melchinger AE (1999b) Minimum sample size and optimal positioning of flanking markers in marker-assisted backcrossing for transfer of a target gene. Crop Sci 39:967–975

    Google Scholar 

  • Grodzicker T, Williams J, Sharp P, Sambrook J (1975) Physical mapping of temperature sensitive mutants of adenovirus. Cold Spring Harb Symp Quant Biol 39:439–446

    PubMed  Google Scholar 

  • Gu WK, Weeden NF, Yu J, Wallace DH (1995) Large-scale, cost effective screening of PCR products in marker-assisted selection applications. Theor Appl Genet 91:465–470

    CAS  PubMed  Google Scholar 

  • Gupta M, Chyi YS, Romero-Severson J, Owen JL (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet 89:998–1006

    CAS  PubMed  Google Scholar 

  • Gupta HS, Raman B, Agrawal PK, Mahajan V, Hossain F, Nepolean T (2013) Accelerated development of quality protein maize hybrid through marker-assisted introgression of opaque-2 allele. Plant Breed 132:77–82

    CAS  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    CAS  PubMed  Google Scholar 

  • Hallauer AR (1992) Recurrent selection in maize. Plant Breed Rev 9:115–179

    Google Scholar 

  • Hamada H, Petrino MG, Kakunaga T (1982) A novel repeat element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Natl Acad Sci U S A 79:6465–6469

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hatada, Hayashizaki Y, Hirotsune S, Komatsubara H, Muka T (1991) A genomic scanning method of higher organisms using restriction sites in landmarks. Proc Natl Acad Sci USA 88:9523–9527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herzog E, Frisch M (2011) Selection strategies for marker-assisted backcrossing with high-throughput marker systems. Theor Appl Genet 123:251–260

    PubMed  Google Scholar 

  • Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rep 21:289–294

    CAS  Google Scholar 

  • Huyen LTN, Cuc LM, Ismail AM, Ham LH (2012) Introgression the salinity tolerance QTLs Saltol into AS996, the elite rice variety of Vietnam. Am J Plant Sci 3:981–987

    CAS  Google Scholar 

  • Ishii T, Yonezawa K (2007) Optimization of the marker-based procedures for pyramiding genes from multiple donor lines: I. Schedule of crossing between the donor lines. Crop Sci 47:537–546

    Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jairin J, Teangdeerith S, Leelagud P, Kothcharerk J, Sansen K, Yi M, Vanavichit A, Toojinda T (2009) Development of rice introgression lines with brown planthopper resistance and KDML105 grain quality characteristics through marker-assisted selection. Field Crops Res 110:263–271

    Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177

    CAS  PubMed  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73

    CAS  PubMed  Google Scholar 

  • Jordan SA, Humphries P (1994) Single nucleotide polymorphism in exon 2 of the BCP gene on 7q31-q35. Hum Mol Genet 3:1915

    CAS  PubMed  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    CAS  Google Scholar 

  • Kalendar R, Antonius K, Smýkal P, Schulman AH (2010) iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor Appl Genet 121:1419–1430

    CAS  PubMed  Google Scholar 

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kearsey MJ (1998) The principles of QTL analysis (a minimal mathematics approach). J Exp Bot 49:1619–1623

    CAS  Google Scholar 

  • Khush GS (1987) List of gene markers maintained in the Rice Genetic Stock Center, IRRI. Rice Genet Newsl 4:56–62

    Google Scholar 

  • Khush GS, Brar DS (1991) Genetics of resistance to insects in crop plants. Adv Agron 45:223–274

    Google Scholar 

  • Koes R, Souer E, van Houwelingen A, Mur L, Spelt C, Quattrocchio F, Wing BJ, Oppedijk B, Ahmed C, Maes T, Gerats T, Hoogeveen P, Meesters M, Kloos D, Mol JNM (1995) Targeted gene inactivation in petunia by PCR-based selection of transposon insertion mutants. Proc Natl Acad Sci U S A 92:8149–8153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kruglyak L (1999) Prospects for whole-genome mapping of common disease genes. Nat Genet 22:139–144

    CAS  PubMed  Google Scholar 

  • Kuchel H, Ye G, Fox R, Jefferies S (2005) Genetic and economic analysis of a targeted marker-assisted wheat breeding strategy. Mol Breed 16:67–78

    Google Scholar 

  • Landegren U, Kaiser R, Sanders J, Hood L (1988) DNA diagnostics. Molecular techniques and automation. Science 241:1077–1080

    CAS  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:445–461

    Google Scholar 

  • Liu Q, Cao S, Zhou XR, Wood C, Green A, Singh S (2013) Nonsense-mediated mRNA degradation of CtFAD2-1 and development of a perfect molecular marker for olol mutation in high oleic safflower (Carthamus tinctorius L.). Theor Appl Genet. doi:10.1007/s00122-013-2129-2

    Google Scholar 

  • Luciana Rosso M, Burleson SA, Maupin LM, Rainey KM (2011) Development of breeder-friendly markers for selection of MIPS1 mutations in soybean. Mol Breed 28:127–132

    CAS  Google Scholar 

  • Martin GB, Williams JGK, Tanksley SD (1991) Rapid identification of markers linked to Pseudomonas resistance gene in tomato by using random primers and near isogenic lines. Proc Natl Acad Sci U S A 88:2336–2340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer W, Mitchell TG, Freedman EZ, Vilgalys R (1993) Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans. J Clin Microbiol 31:2274–2280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michaelson JJ, Loguercio S, Beyer A (2009) Detection and interpretation of expression quantitative trait loci (eQTL). Methods 48:265–276

    CAS  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kasseri RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc Natl Acad Sci U S A 88:9828–9832

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morgante M, Vogel J (1994) Compound microsatellite primers for the detection of genetic polymorphisms. US Patent Application No. 08/326456

    Google Scholar 

  • Morris M, Dreher K, Ribaut JM, Khairallah M (2003) Money matters (II): costs of maize inbred line conversion schemes at CIMMYT using conventional and marker-assisted selection. Mol Breed 11:235–247

    Google Scholar 

  • Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot 110:1303–1316

    PubMed Central  PubMed  Google Scholar 

  • Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BCY, Septiningsih EM, Vergara G, Sanchez D, Xu K, Ismail AM, Mackill DJ (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115:767–776

    CAS  PubMed  Google Scholar 

  • Nelson RM, Pettersson ME, Carlborg O (2013) A century after Fisher: time for a new paradigm in quantitative genetics. Trends Genet 29:669–676

    CAS  PubMed  Google Scholar 

  • Olsen M, Hood L, Cantor C, Botstein D (1989) A common language for physical mapping of the human genome. Science 245:1434–1435

    Google Scholar 

  • Orellana J, Fernández-Calvín B, Vázquez JF, Carrillo JM (1993) Mapping of genes controlling seed storage-proteins and cytological markers on chromosome 1R of rye. Theor Appl Genet 85:639–643

    CAS  PubMed  Google Scholar 

  • Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using polymerase chain reaction. Genomics 5:874–879

    CAS  PubMed  Google Scholar 

  • Pang M, Percy RG, Hughs E, Zhang J (2008) Promoter anchored amplified polymorphism based on random amplified polymorphic DNA (PAAPRAPD) in cotton. Euphytica 167:281–291

    Google Scholar 

  • Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    CAS  PubMed  Google Scholar 

  • Paterson AH (1996) Mapping genes responsible for differences in phenotype. In: Paterson AH (ed) Genome mapping in plants. R.G. Landes Company, Austin, pp 41–54

    Google Scholar 

  • Paterson AH (1998) Molecular dissection of complex traits. CRC Press, Boca Raton, p 336

    Google Scholar 

  • Peleman JD, Van Der Voort JR (2003) Breeding by design. Trends Plant Sci 7:330–334

    Google Scholar 

  • Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JPT, Hyvönen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9:6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prabhu KV, Singh AK, Basavaraj SH, Cherukuri DP, Charpe A, Gopala Krishnan S, Gupta SK, Joseph M, Koul S, Mohapatra T, Pallavi JK, Samsampour D, Singh A, Singh VK, Singh A, Singh VP (2009) Marker assisted selection for biotic stress resistance in wheat and rice. Indian J Genet 69(Spl. issue 4):305–314

    CAS  Google Scholar 

  • Price AH (2006) Believe it or not, QTLs are accurate! Trends Plant Sci 11:213–216

    CAS  PubMed  Google Scholar 

  • Prigge V, Melchinger AE, Dhillon BS, Frisch M (2009) Efficiency gain of marker-assisted backcrossing by sequentially increasing marker densities over generations. Theor Appl Genet 119:23–32

    CAS  PubMed  Google Scholar 

  • Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351–360

    CAS  PubMed  Google Scholar 

  • Ribaut JM, de Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13:213–218

    PubMed  Google Scholar 

  • Rohde W (1996) Inverse sequence-tagged repeat (ISTR) analysis, a novel and universal PCR-based technique for genome analysis in the plant and animal kingdom. J Genet Breed 50:249–261

    CAS  Google Scholar 

  • Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA (1986) Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature 324:163–166

    CAS  PubMed  Google Scholar 

  • Santos AG, Livingston DP, Jellen EN, Wooten DR, Murphy JP (2006) A cytological marker associated with winter hardiness in oat. Crop Sci 46:203–208

    Google Scholar 

  • Sax K (1923) The association of size differences with seed coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmierer DA, Kandemir N, Kudrna DA, Jones BL, Ullrich SE, Kleinhofs A (2004) Molecular marker-assisted selection for enhanced yield in malting barley. Mol Breed 14:463–473

    CAS  Google Scholar 

  • Schuppert GF, Tang S, Slabaugh MB, Knapp SJ (2006) The sunflower high-oleic mutant Ol carries variable tandem repeats of FAD2-1, a seed-specific oleoyl-phosphatidyl choline desaturase. Mol Breed 17:241–256

    CAS  Google Scholar 

  • Seibt KM, Wenke T, Wollrab C, Junghans H, Muders K, Dehmer KJ, Diekmann K, Schmidt T (2012) Development and application of SINE-based markers for genotyping of potato varieties. Theor Appl Genet 125:185–196

    CAS  PubMed  Google Scholar 

  • Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of submergence tolerant rice cultivars: the SUB1 locus and beyond. Ann Bot 103:151–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shuber AP, Michalowsky LA, Nass GS, Skoletsky J, Hire LM, Kotsopoulos SK, Phipps MF, Barberio DM, Klinger KW (1997) High throughput parallel analysis of hundreds of patient samples for more than 100 mutations in multiple disease genes. Hum Mol Genet 6:337–347

    CAS  PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    CAS  PubMed  Google Scholar 

  • Sundaram RM, Vishnupriya MR, Biradar SK, Laha GS, Reddy GA, Shobha Rani N, Sarma NP, Sonti RV (2008) Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica 160:411–422

    Google Scholar 

  • Swamy BP, Sarla N (2008) Yield-enhancing quantitative trait loci (QTLs) from wild species. Biotechnol Adv 26:106–120

    CAS  PubMed  Google Scholar 

  • Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BAJ, Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725

    CAS  PubMed  Google Scholar 

  • Terracciano I, Maccaferri M, Bassi F, Mantovani P, Sanguineti MC, Salvi S, Simkova H, Dolezel J, Massi A, Ammar K, Kolmer J, Tuberosa R (2013) Development of COS-SNP and HRM markers for high throughput and reliable haplotype-based detection of Lr14a in durum wheat (Triticum durum Desf.). Theor Appl Genet 126:1077–1101

    CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    CAS  PubMed  Google Scholar 

  • Thoday JM (1961) Location of polygenes. Nature 191:368–370

    Google Scholar 

  • Thomson MJ, Zhao K, Wright M, McNally KL, Rey J, Tung CW, Reynolds A, Scheffler B, Eizenga G, McClung A, Kim H, Ismail AM, de Ocampo M, Mojica C, Reveche MY, Dilla-Ermita CJ, Mauleon R, Leung H, Bustamante C, McCouch SR (2012) High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform. Mol Breed 29:875–886

    CAS  Google Scholar 

  • Triglia T, Peterson MG, Kemp DJ (1988) A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res 16:8180–8186

    Google Scholar 

  • Vadez V, Deshpande SP, Kholova J, Hammer GL, Borrell AK, Talwar HS, Hash CT (2011) Stay-green quantitative trait loci’s effects on water extraction, transpiration efficiency and seed yield depend on recipient parent background. Funct Plant Biol 38:553–566

    Google Scholar 

  • van der Wurff AWG, Chan YL, van Straalen NM, Schouten J (2000) TE-AFLP: combining rapidity and robustness in DNA fingerprinting. Nucleic Acids Res 28:105–109

    Google Scholar 

  • Verlaan MG, Szinay D, Hutton SF, de Jong H, Kormelink R, Visser RGF, Scott JW, Bai Y (2011) Chromosomal rearrangements between tomato and Solanum chilense hamper mapping and breeding of the TYLCV resistance gene Ty-1. Plant J 68:1093–1103

    CAS  PubMed  Google Scholar 

  • Visscher PM, Haley CS, Thompson R (1996) Marker-assisted introgression in backcross breeding programs. Genetics 144:1923–1932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walker GT, Little MC, Nadeau JG, Shank DD (1992) Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Natl Acad Sci U S A 89:392–396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang G, Mahalingan R, Knap HT (1998) (C-A) and (GA) anchored simple sequence repeats (ASSRs) generated polymorphism in soybean, Glycine max (L.) Merr. Theor Appl Genet 96:1086–1096

    CAS  Google Scholar 

  • Waugh R, Bonar N, Baird E, Thomas B, Graner A, Hayes P, Powell W (1997) Homology of AFLP products in three mapping populations of barley. Mol Gen Genet 255:311–321

    CAS  PubMed  Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalsky JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winzeler EA, Richards DR, Conway AR, Goldstein AL, Kalman S, McCullough MJ, McCusker JH, Stevens DA, Wodicka L, Lockhart DJ, Davis RW (1998) Direct allelic variation scanning of the yeast genome. Science 281:1194–1197

    CAS  PubMed  Google Scholar 

  • Wu K, Jones R, Dannaeberger L, Scolnik PA (1994) Detection of microsatellite polymorphisms without cloning. Nucleic Acids Res 22:3257–3258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Google Scholar 

  • Ye G, Smith KF (2008) Marker assisted gene pyramiding for inbred line development: basic principles and practical guidelines. Intl J Plant Breed 2:1–10

    Google Scholar 

  • Yi M, Nwe KT, Vanavichit A, Chai-arree W, Toojinda T (2009) Marker-assisted backcross breeding to improve cooking quality traits in Myanmar rice cultivar Manawthukha. Field Crop Res 113:178–186

    Google Scholar 

  • Yoshimura S, Yoshimura A, Nelson R, Mew TW, Iwata N (1993) Tagging genes for bacterial blight resistance in rice by RFLP and RAPD Markers. In: You C, Chen Z, Ding Y (eds) Biotechnology in agriculture, vol 15. Kluwer Academic Publishers, The Netherlands pp 250–253

    Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    PubMed Central  PubMed  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng ZB, Kao CH, Basten CJ (1999) Estimating the genetic architecture of quantitative traits. Genet Res 74:279–289

    CAS  PubMed  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeats (SSR)-anchored PCR amplification. Genomics 20:176–183

    CAS  PubMed  Google Scholar 

  • Zou G, Zuo Y (2006) On the sample size requirement in genetic association tests when the proportion of false positives is controlled. Genetics 172:687–691

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sujatha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Kadirvel, P., Senthilvel, S., Geethanjali, S., Sujatha, M., Varaprasad, K.S. (2015). Genetic Markers, Trait Mapping and Marker-Assisted Selection in Plant Breeding. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2283-5_4

Download citation

Publish with us

Policies and ethics