Skip to main content

Genetic Engineering Strategies for Biotic Stress Tolerance in Plants

  • Chapter
Plant Biology and Biotechnology

Abstract

Crop plants are exposed to a plethora of biotic and abiotic stresses. Biotic stresses such as pathogens (viruses, bacteria and fungi), insect pests, nematode parasites and weeds cause a significant loss of crop yield and quality. Although conventional strategies like breeding for resistant varieties and agrochemicals and biocontrol agents for control of diseases and pests have been in use for a long time, these have been met with limited success. During the last 10 years, technological advancements in genetic engineering have led to the development of transgenic crop varieties resistant to various biotic stresses. A large number of transgenic crops have been developed and more are underway; however, the number of biotech crops reaching the field from labs is still limited. Transgenic crops developed against insect resistance and/or herbicide tolerance have been commercial success stories, an example being Bt cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abad P, Favery B, Rosso MN, Castagnone-Sereno P (2003) Root knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Mol Plant Pathol 4:217–224

    CAS  PubMed  Google Scholar 

  • Altpeter F, Diaz I, McAuslane H, Gaddour K et al (1999) Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Mol Breeding 5:53–63

    CAS  Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ et al (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544

    PubMed  Google Scholar 

  • Atkinson HJ, Urwin PE, McPherson MJ (2003) Engineering plants for nematode resistance. Annu Rev Phytopathol 41:615–639

    CAS  PubMed  Google Scholar 

  • Auer C, Frederick P (2009) Crop improvement using small RNAs: applications and predictive ecological risk assessments. Trends Biotechnol 27:644–651

    CAS  PubMed  Google Scholar 

  • Bates SL, Zhao J-Z, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23:57–62

    CAS  PubMed  Google Scholar 

  • Baulcombe D (2010) Reaping benefits of crop research. Science 327:761

    CAS  PubMed  Google Scholar 

  • Baum JA, Bogaert T, Clinton W, Heck GR et al (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    CAS  PubMed  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors, effectors and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

    CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    CAS  PubMed  Google Scholar 

  • Bird DMK, Kaloshian I (2003) Are roots special? Nematodes have their say. Physiol Mol Plant Pathol 62:115–123

    Google Scholar 

  • Brumin M, Stukalov S, Haviv S, Muruganantham M et al (2009) Post transcriptional gene silencing and virus resistance in Nicotiana benthamiana expressing a Grapevine virus a minireplicon. Transgenic Res 18:331–345

    CAS  PubMed  Google Scholar 

  • Chakraborty S, Chakraborty N, Datta A (2000) Increased nutritive value of transgenic potato by expressing a nonallergic seed albumin gene from Amaranthus hypochondriacus. Proc Natl Acad Sci U S A 97:3724–3729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christou P, Capell T, Kohli A, Gatehouse JA et al (2006) Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci 11:302–308

    CAS  PubMed  Google Scholar 

  • Collier R, Fellows J, Adams S, Semenov M et al (2008) Vulnerability of horticultural crop production to extreme weather events. In: Halford N, Jones HD, Lawlor D (eds) Effects of climate change on plants: implications for agriculture, Association of Applied Biologists, The Warwick Enterprise Park, Wellesbourne, Warwick, USA, pp 3–13

    Google Scholar 

  • Cooper B, Lapidot M, Heick JA, Dodds JA et al (1995) A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility. Virology 206:307–313

    CAS  PubMed  Google Scholar 

  • Cowgill SE, Wright C, Atkinson HJ (2002) Transgenic potatoes with enhanced levels of nematode resistance do not have altered susceptibility to nontarget aphids. Mol Ecol 11(4):821–827

    CAS  PubMed  Google Scholar 

  • Crickmore N, Zeigler DR, Schnepf E, Van Rie J et al (2007) Bacillus thuringiensis toxin nomenclature. http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/

  • Crothers L (2006) Agricultural biotechnology annual report 2006. GAIN report. http://www.fas.usda.gov/gainfiles/200606/146198091.doc

  • Daniel JL, David JE, Paul J (2000) Role of proteolysis in determining potency of Bacillus thuringiensis Cry1Ac-endotoxin. Appl Environ Microbiol 66:5174–5181

    Google Scholar 

  • Datta A (2012) GM crops: dream to bring science to society. Agric Res 1:95–99

    Google Scholar 

  • Datta A (2013) Genetic engineering for improving quality and productivity of crops. Agric Food Secur 2:15–17

    Google Scholar 

  • Davis EL, Hussey RS, Baum TJ (2004) Getting to the roots of parasitism by nematodes. Trends Parasitol 20:134–141

    PubMed  Google Scholar 

  • De Leo F, Bonade-Bottino M, Ruggiero Ceci L, Gallerani R et al (2001) Effects of a mustard trypsin inhibitor expressed in different plants on three lepidopteran pests. Insect Biochem Mol Biol 31:593–602

    PubMed  Google Scholar 

  • Din B, Wang X, Lu W, Chen M et al (2014) Development of highly glyphosate-tolerant tobacco by coexpression of glyphosate acetyltransferase gat and EPSPS G2-aroA genes. Crop J 2(2–3):164–169

    Google Scholar 

  • Ding X, Gopalakrishnan B, Johnson LB, White FF et al (1998) Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgenic Res 7:77–84

    CAS  PubMed  Google Scholar 

  • Dona A, Arvanitoyannis IS (2009) Health risks of genetically modified foods. Crit Rev Food Sci Nutr 49:164–175

    CAS  PubMed  Google Scholar 

  • Du Q, Thonberg H, Wang J, Wahlestedt C et al (2005) A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res 33:1671–1677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duan C-G, Wang C-H, Guo H-S (2012) Application of RNA silencing to plant disease resistance. Silence 3:5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Easterling D, Meehl GA, Parmesan C, Changnon SA et al (2000) Climate extremes: observations, modeling and impacts. Science 289:2068–2074

    CAS  PubMed  Google Scholar 

  • Estruch JJ, Waren GW, Mullis MA, Nye GJ et al (1996) Vip 3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci U S A 93:5389–5394

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evans A (2009) The feeding of the nine billion: global food security for the 21st century. Chatham House, London

    Google Scholar 

  • Fang J, Xu X, Wang P, Zhao J-Z et al (2007) Characterization of Chimeric Bacillus thuringiensis Vip3 toxins. Appl Environ Microbiol 73:956–961

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferreira RB, Monteiro S, Freitas R, Santos CN et al (2007) The role of plant defense proteins in fungal pathogenesis. Mol Plant Pathol 8:677–700

    CAS  PubMed  Google Scholar 

  • Fire A, Xu SQ, Montgomery MK, Kostas SA et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    CAS  PubMed  Google Scholar 

  • Fox JL (2003) Resistance to Bt toxin surprisingly absent from pests. Nat Biotechnol 21:958–959

    CAS  PubMed  Google Scholar 

  • Ganesan U, Suri SS, Rajasubramaniam S, Rajam MV et al (2009) Transgenic expression of coat protein gene of Rice tungro bacilliform virus in rice reduces the accumulation of viral DNA in inoculated plants. Virus Genes 39:113–119

    CAS  PubMed  Google Scholar 

  • Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146:881–887

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gatehouse JA (2011) Prospects for using proteinase inhibitors to protect transgenic plants against attack by herbivorous insects. Curr Protein Pept Sci 12(5):409–416

    CAS  PubMed  Google Scholar 

  • Goldberg RJ, Tjaden G (1990) Are B.t.t. plants really safe to eat. Biotechnology 8:1011–1014

    Google Scholar 

  • Gonsalves D, Gonsalves C, Ferreira S, Pitz M, Manshardt R, Slightom J (2004) Transgenic virus resistant papaya: from hope to reality for controlling papaya ringspot virus in Hawaii. APSnet features. http://www.apsnet.org/online/feature

  • Gressel J (1999) Tandem constructs: preventing the rise of super weeds. Trends Biotechnol 17:361–366

    CAS  PubMed  Google Scholar 

  • Gressel J (2012) Containing and mitigating transgene flow from crops to weeds, to wild species, and to crops. In: Altman A, Hasegawa PM (eds) Plant biotechnology and agriculture: prospects for the 21st century. Academic, Amsterdam, pp 509–523

    Google Scholar 

  • Guo H, Song X, Wang G, Yang K et al (2014) Plant-generated artificial small RNAs mediated aphid resistance. PLoS One 9(5):e97410

    PubMed Central  PubMed  Google Scholar 

  • Gupta A, Pal RK, Rajam MV (2013) Delayed ripening and improved fruit processing quality in tomato by RNAi-mediated silencing of three homologs of ACC synthase gene. J Plant Physiol 170:987–995

    CAS  PubMed  Google Scholar 

  • Hazarika P, Rajam MV (2011) Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine decarboxylase gene. Physiol Mol Biol Plants 17:115–128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herouet-Guicheney C, Rouquié D, Freyssinet M, Currier T et al (2009) Safety evaluation of the double mutant 5-enolpyruvylshikimate-3-phosphate synthase (2mEPSPS) from maize that confers tolerance to glyphosate herbicide in transgenic plants. Regul Toxicol Pharmacol 54:143–153

    CAS  PubMed  Google Scholar 

  • Huang G, Allen R, Davis EL, Baum TJ et al (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci U S A 103:14302–14306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huesing J, Lloyd F, Levine S, Vaughn T (2009) Approaches to tier-based NTO testing of RNAi pest control traits. Entomological Society of America, Annual meeting, Indianapolis, 15 Dec

    Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KHM (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    CAS  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51

    CAS  PubMed  Google Scholar 

  • James C (2013) Global status of commercialized biotech/GM crops: 2012. China Biotechnol 33:1–8

    Google Scholar 

  • Khatri M, Rajam MV (2007) Targeting polyamines of Aspergillus nidulans by siRNA specific to fungal ornithine decarboxylase gene. Med Mycol 45:211–220

    CAS  PubMed  Google Scholar 

  • Kimura M, Takahashi-Ando N, Nishiuchi T, Ohsato S et al (2006) Molecular biology and biotechnology for reduction of Fusarium mycotoxin contamination. Pestic Biochem Physiol 86:117–123

    CAS  Google Scholar 

  • Kiraly L, Barnaz B, Kiralyz Z (2007) Plant resistance to pathogen infection: forms and mechanisms of innate and acquired resistance. J Phytopathol 155:385–396

    CAS  Google Scholar 

  • Koenning SR, Overstreet C, Noling JW, Donald PA et al (1999) Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994. J Nematol 31:587–618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar M, Gupta GP, Rajam MV (2009) Silencing of acetylcholinesterase gene of Helicoverpa armigera by siRNA affects larval growth and its life cycle. J Insect Physiol 55(3):273–278

    CAS  PubMed  Google Scholar 

  • Lindbo JA, Dougherty WG (1992) Pathogen-derived resistance to a potyvirus: immune and resistant phenotypes in transgenic tobacco expressing altered forms of a potyvirus coat protein nucleotide sequence. Mol Plant Microbe Interact 5:144–153

    CAS  PubMed  Google Scholar 

  • Liu D, Burton S, Glancy T, Li Z-S et al (2003) Insect resistance conferred by 283-kDa Photorhabdus luminescens protein TcdA in Arabidopsis thaliana. Nat Biotechnol 21:1222–1228

    CAS  PubMed  Google Scholar 

  • Lonsdale D, Gibbs JN (2002) Effects of climate change on fungal diseases of trees. In: Broadmeadow MSJ (ed) Climate change: impacts on UK forests, Forestry Commission Bulletin No 125. Forestry Commission, Edinburgh, pp 83–97

    Google Scholar 

  • Manoharan M, Dahleen LS, Hohn TM, Neate SM et al (2006) Expression of 3-OH trichothecene acetyltransferase in barley (Hordeum vulgare L.) and effects on deoxynivalenol. Plant Sci 171:699–706

    CAS  Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ et al (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    CAS  PubMed  Google Scholar 

  • Marco F, Alcázar R, Altabella T, Carrasco P et al (2012) Polyamines in developing stress-resistant crops. Improving crop resistance to abiotic stress. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 623–635

    Google Scholar 

  • Mawassi M, Gera A (2012) Controlling plant responses to the environment: viral diseases. In: Altman A, Hasegawa PM (eds) Plant biotechnology and agriculture: prospects for the 21st century. Academic, Amsterdam, pp 343–352

    Google Scholar 

  • Mendelsohn M, Kough J, Vaituzis Z, Matthews K (2003) Are Bt crops safe? Nat Biotechnol 21:1003–1009

    CAS  PubMed  Google Scholar 

  • Moar W, Roush R, Shelton A, Ferre J et al (2008) Field-evolved resistance to Bt toxins. Nat Biotechnol 26:1072–1074

    CAS  PubMed  Google Scholar 

  • Nelson A, Roth DA, Johnson JD (1993) Tobacco mosaic virus infection of transgenic Nicotiana tabacum plants is inhibited by antisense constructs directed at the 5′ region of viral RNA. Gene 127:227–232

    CAS  PubMed  Google Scholar 

  • Niblett CL, Bailey AM (2012) Potential application of gene silencing or RNA interference (RNAi) to control disease and insect pests of date palm. Emir J Food Agric 24:462–469

    Google Scholar 

  • Niu QW, Lin SS, Reyes JL, Chen KC et al (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 11:1420–1428

    Google Scholar 

  • Nowara D, Gay A, Lacomme C, Shaw J et al (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohsato S, Ochiai-Fukuda T, Nishiuchi T, Takahashi- Ando N et al (2007) Transgenic rice plants expressing trichothecene 3-O-acetyltransferase show resistance to the Fusarium phytotoxin deoxynivalenol. Plant Cell Rep 26:531–538

    CAS  PubMed  Google Scholar 

  • Okubara PA, Blechl AE, McCormick SP, Alexander NJ et al (2002) Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theor Appl Genet 106:74–83

    CAS  PubMed  Google Scholar 

  • Pierpoint WS, Hughes KJD (1996) Modifying resistance to insect pests. In: Pierpoint WS, Shewry PR (eds) Genetic engineering of crop plants for resistance to pests and diseases. British Crop Protection Council, Farnham, pp 49–65

    Google Scholar 

  • Pitino M, Coleman AD, Maffei ME, Ridout CJ et al (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS One 6:e25709

    CAS  PubMed Central  PubMed  Google Scholar 

  • Powell-Abel P, Nelson RS, De B, Hoffmann N et al (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Google Scholar 

  • Prabhavathi V, Rajam MV (2007) Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnol 24:273–282

    CAS  Google Scholar 

  • Prins M, Goldbach R (1998) The emerging problem of tospovirus infection and nonconventional methods of control. Trends Microbiol 6:31–35

    CAS  PubMed  Google Scholar 

  • Prins M, Laimer M, Noris E, Schubert J et al (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83

    CAS  PubMed  Google Scholar 

  • Punja ZK (2006) Recent developments toward achieving fungal disease resistance in transgenic plants. Can J Plant Pathol 28:298–308

    Google Scholar 

  • Raina AK, Rafaeli A, Kingan T (1994) Pheromonotropic activity of orally administered PBAN and its analogues in Helicoverpa zea. J Insect Physiol 40:393–397

    CAS  Google Scholar 

  • Rajam MV (1991) Insecticidal activity of inhibitors of polyamine biosynthesis on Spodoptera litura F. larvae. Indian J Exp Biol 29(9):881–882

    CAS  PubMed  Google Scholar 

  • Rajam MV (2011) RNA interference: a new approach for the control of fungal pathogens and insects. In: Proceedings of the national symposium on ‘genomics and crop improvement: relevance and reservations’, Held at the Acharya N.G. Ranga Agricultural University, during 25–27 Feb 2010, pp 220–229

    Google Scholar 

  • Rajam MV (2012a) Micro RNA interference: a new platform for crop protection. Cell Dev Biol 1: http://dx.doi.org/10.4172/2168-9296.1000e115

  • Rajam MV (2012b) Host induced silencing of fungal pathogen genes: an emerging strategy for disease control in crop plants. Cell Dev Biol 1: http://dx.doi.org/10.4172/2168-9296.1000e118

  • Rajam MV, Singh N (2011) Engineering fungal resistance: promises of RNAi. In: Proceedings of the national symposium on ‘molecular approaches for management of fungal diseases of crop plants’, Indian Institute of Horticultural Research, Bangalore, 27–30 Dec 2010. pp 118–130

    Google Scholar 

  • Rajam MV, Dagar S, Waie B, Yadav JS et al (1998) Genetic engineering of polyamine and carbohydrate metabolism for osmotic stress tolerance in higher plants. J Biosci 23:473–482

    CAS  Google Scholar 

  • Rajam MV, Chandola N, Saiprasad Goud P, Singh D et al (2007) Thaumatin gene confers resistance to fungal pathogens as well as tolerance to abiotic stresses in transgenic tobacco plants. Biol Plant 51:135–141

    CAS  Google Scholar 

  • Rao GU, Kaur M, Verma A, Sihachakr D, Rajam MV (1999) Genetic engineering of crop plants for resistance to fungal pathogens. J Plant Biol 26:31–42

    Google Scholar 

  • Rubino L, Russo M (1995) Characterization of resistance to cymbidium ringspot virus in transgenic plants expressing a full-length viral replicase gene. Virology 212(1):240–243

    CAS  PubMed  Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425–449

    CAS  Google Scholar 

  • Salomon D, Sessa G (2012) Biotechnological strategies for engineering plants with durable resistance to fungal and bacterial pathogens. In: Altman A, Hasegawa PM (eds) Plant biotechnology and agriculture: prospects for the 21st century. Academic, Amsterdam, pp 329–342

    Google Scholar 

  • Sano T, Nagayama A, Ogawa T, Ishida I et al (1997) Transgenic potato expressing a double-stranded RNA-specific ribonuclease is resistant to potato spindle tuber viroid. Nat Biotechnol 15:1290–1294

    CAS  PubMed  Google Scholar 

  • Shah DM, Horsch RB, Klee HJ, Kishore GM et al (1986) Engineering herbicide tolerance in transgenic plants. Science 233:478–481

    CAS  PubMed  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2003) Economic, ecological, food safety and social consequences of the deployment of Bt transgenic plants. Ann Rev Entomol 47:845–881

    Google Scholar 

  • Singh RP, Trethowan R (2007) Breeding spring bread wheat for irrigated and rainfed production systems of the developing world. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell, Ames, pp 109–140

    Google Scholar 

  • Singh D, Ambroise A, Haicour R, Sihachakr D, Rajam MV (2014) Increased resistance to fungal wilts in transgenic eggplant expressing alfalfa glucanase gene. Physiol Mol Biol Plants 20(2):143–150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sinha R, Rajam MV (2013) RNAi silencing of three homologues of S-adenosylmethionine decarboxylase gene in tapetal tissue of tomato results in male sterility. Plant Mol Biol 82:169–180

    CAS  PubMed  Google Scholar 

  • Slater A, Scott N, Fowler M (2003) Plant biotechnology: the genetic manipulation of plants. Oxford University Press, New York, pp 179–203

    Google Scholar 

  • Song X, Wang Z, Qiang S (2011) Agronomic performance of F1, F2 and F3 hybrids between weedy rice and transgenic glufosinate-resistant rice. Pest Manag Sci 67:921–931

    CAS  PubMed  Google Scholar 

  • Tabashnik BE, Gassmann AJ, Crowder DW, Carriere Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26:199–202

    CAS  PubMed  Google Scholar 

  • Tamilarasan S, Rajam MV (2013) Engineering crop plants for nematode resistance through host-derived RNA interference. Cell Dev Biol 2:114. doi:10.4172/2168-9296.1000114

    Google Scholar 

  • Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I et al (2011) RNA interference in lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245

    CAS  PubMed  Google Scholar 

  • Thomas JC, Adams DG, Keppenne VD, Wasmann CC et al (1995) Manduca sexta encoded protease inhibitors expressed in Nicotiana tabacum provide protection against insects. Plant Physiol Biochem 33:611–614

    CAS  Google Scholar 

  • Turner JA (2008) Tracking changes in the importance and distribution of diseases under climate change. Proceedings HGCA R&D conference: arable cropping in a changing climate 2008, pp 68–77

    Google Scholar 

  • Tyagi H, Rajasubramaniam S, Rajam MV, Dasgupta I (2008) RNA-interference in rice against Rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants. Transgenic Res 17:897–904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vaeck M, Reynaerts A, Hofte H, Jansens S et al (1987) Transgenic plants protected from insect attack. Nature 328:33–37

    CAS  Google Scholar 

  • van der Vossen EAG, Gros J, Sikkema A, Muskens M et al (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. Plant J 44:208–222

    PubMed  Google Scholar 

  • Vardi E, Sela I, Edelbaum O, Livneh O et al (1993) Plants transformed with a cistron of a potato virus Y protease (NIa) are resistant to virus infection. Proc Natl Acad Sci U S A 90:7513–7517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waie B, Rajam MV (2003) Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci 164:727–734

    CAS  Google Scholar 

  • Wally O, Punja ZK (2010) Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. G M Crops 1:199–206

    Google Scholar 

  • Wang P, Zoubenko O, Tumer NE (1998) Reduced toxicity and broad spectrum resistance to viral and fungal infection in transgenic plants expressing pokeweed antiviral protein II. Plant Mol Biol 38:957–964

    CAS  PubMed  Google Scholar 

  • Watkins PR, Huesing JE, Margam V, Murdock LL et al (2012) Insects, nematodes, and other pests. In: Altman A, Hasegawa PM (eds) Plant biotechnology and agriculture: prospects for the 21st century. Academic, Amsterdam, pp 353–3370

    Google Scholar 

  • Wolfson JL, Murdock LL (1987) Suppression of larval Colorado potato beetle growth and development by digestive proteinase inhibitors. Entomol Exp Appl 44:235–240

    CAS  Google Scholar 

  • Zhao BY, Lin XH, Poland J, Trick H et al (2005a) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci U S A 102:15383–15388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao JZ, Cao J, Collins HL, Bates SL et al (2005b) Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc Nat Acad Sci 102:8426–8430

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

M.V.R. is grateful to the University Grants Commission, New Delhi, for the Special Assistance Programme, and the Department of Science and Technology (DST), New Delhi, for the FIST and DU-DST PURSE programmes. KSS is indebted to the DST, SERB, for the Fast Track Young Scientist award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manchikatla Venkat Rajam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Sowjanya Sree, K., Rajam, M.V. (2015). Genetic Engineering Strategies for Biotic Stress Tolerance in Plants. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2283-5_30

Download citation

Publish with us

Policies and ethics