Skip to main content

Plant Epigenetics and Crop Improvement

  • Chapter
  • First Online:
PlantOmics: The Omics of Plant Science

Abstract

Developmental cues and environmental signals remodel the chromatin structure, thus affecting various processes, including flowering time, imprinting, floral development, and biotic and abiotic stress responses in plants. Chromatin remodeling through histone tail post-translational modifications, DNA methylation, and ATP-dependent nucleosome reorganization represents a ubiquitous mechanism to regulate gene expression. Most of the epigenetic and epigenomic studies for the regulation of gene expression in response to developmental and environmental stimuli have been carried out in Arabidopsis. Although genetic modifications have been used for crop improvement, however, the epigenetic modifications are at their beginning. In this chapter, we summarize the roles of chromatin-remodeling mechanisms in response to environmental stimuli and discuss their potential for crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agger K, Christensen J, Cloos PA, Helin K (2008) The emerging functions of histone demethylases. Curr Opin Genet Dev 18:159–168

    CAS  PubMed  Google Scholar 

  • Akimoto K, Katakami H, Kim HJ, Ogawa E, Sano CM, Wada Y et al (2007) Epigenetic inheritance in rice plants. Ann Bot 100:205–217

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aletta JM, Cimato TR, Ettinger MJ (1998) Protein methylation: a signal event in post-translational modification. Trends Biochem Sci 23:89–91

    CAS  PubMed  Google Scholar 

  • Alexandre C, Moller-Steinbach Y, Schonrock N, Gruissem W, Hennig L (2009) Arabidopsis MSI1 is required for negative regulation of the response to drought stress. Mol Plant 2:675–687

    CAS  PubMed  Google Scholar 

  • Allfrey V, Faulkner R, Mirsky A (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794

    PubMed Central  CAS  PubMed  Google Scholar 

  • Allis CD, Chicoine LG, Richman R, Schulman IG (1985) Deposition-related histone acetylation in micronuclei of conjugating Tetrahymena. Proc Natl Acad Sci U S A 82:8048–8052

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alvarez-Venegas R, Sadder M, Hlavacka A, Baluska F, Xia Y, Lu G et al (2006) The Arabidopsis homolog of trithorax, ATX1, binds phosphatidylinositol 5-phosphate, and the two regulate a common set of target genes. Proc Natl Acad Sci U S A 103:6049–6054

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baek D, Jiang J, Chung J-S, Wang B, Chen J, Xin Z et al (2011) Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance. Plant Cell Physiol 52:149–161

    CAS  PubMed  Google Scholar 

  • Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33:1–13

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bedford MT, Richard S (2005) Arginine methylation: an emerging regulator of protein function. Mol Cell 18:263–272

    CAS  PubMed  Google Scholar 

  • Benhamed M, Bertrand C, Servet C, Zhou D-X (2006) Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell Online 18:2893–2903

    CAS  Google Scholar 

  • Berr A, McCallum EJ, Alioua A, Heintz D, Heitz T, Shen WH (2010) Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi. Plant Physiol 154:1403–1414

    PubMed Central  CAS  PubMed  Google Scholar 

  • Berr A, Shafiq S, Shen WH (2011) Histone modifications in transcriptional activation during plant development. Biochim Biophys Acta 1809:567–576

    CAS  PubMed  Google Scholar 

  • Berr A, Ménard R, Heitz T, Shen W-H (2012) Chromatin modification and remodelling: a regulatory landscape for the control of Arabidopsis defence responses upon pathogen attack. Cell Microbiol 14:829–839

    CAS  PubMed  Google Scholar 

  • Bertrand C, Bergounioux C, Domenichini S, Delarue M, Zhou DX (2003) Arabidopsis histone acetyltransferase AtGCN5 regulates the floral meristem activity through the WUSCHEL/AGAMOUS pathway. J Biol Chem 278:28246–28251

    CAS  PubMed  Google Scholar 

  • Bilichak A, Ilnystkyy Y, Hollunder J, Kovalchuk I (2012) The progeny of Arabidopsis thaliana plants exposed to salt exhibit changes in DNA methylation, histone modifications and gene expression. PLoS ONE 7:e30515

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bourque S, Dutartre A, Hammoudi V, Blanc S, Dahan J, Jeandroz S, Pichereaux C et al (2011) Type-2 histone deacetylases as new regulators of elicitor-induced cell death in plants. New Phytol 192:127–139

    CAS  PubMed  Google Scholar 

  • Briggs SD, Xiao T, Sun Z-W, Caldwell JA, Shabanowitz J, Hunt DF et al (2002) Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418:498

    CAS  Google Scholar 

  • Casati P, Campi M, Chu F, Suzuki N, Maltby D, Guan S et al (2008) Histone acetylation and chromatin remodeling are required for UV-B-dependent transcriptional activation of regulated genes in maize. Plant Cell 20:827–842

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cervera MT, Ruiz-García L, Martínez-Zapater JM (2002) Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Gen Genet 268:543–552

    CAS  Google Scholar 

  • Chen K, Gao C (2014) Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep 33:575–583

    CAS  PubMed  Google Scholar 

  • Chen LT, Wu K (2010) Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. Plant Signal Behav 5:1318–1320

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Z, Zhang H, Jablonowski D, Zhou X, Ren X, Hong X et al (2006) Mutations in ABO1/ELO2, a subunit of holo-Elongator, increase abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana. Mol Cell Biol 26:6902–6912

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen LT, Luo M, Wang YY, Wu K (2010) Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot 61:3345–3353

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Q, Chen X, Wang Q, Zhang F, Lou Z, Zhang Q et al (2013) Structural basis of a histone H3 lysine 4 demethylase required for stem elongation in rice. PLoS Genet 9:e1003239

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    PubMed Central  CAS  PubMed  Google Scholar 

  • Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics 277:589–600

    CAS  PubMed  Google Scholar 

  • Choi SM, Song HR, Han SK, Han M, Kim CY, Park J et al (2012) HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. Plant J 71:135–146

    CAS  PubMed  Google Scholar 

  • Colomé-Tatché M, Cortijo S, Wardenaar R, Morgado L, Lahouze B, Sarazin A et al (2012) Features of the Arabidopsis recombination landscape resulting from the combined loss of sequence variation and DNA methylation. Proc Natl Acad Sci U S A 109:16240–16245

    PubMed Central  PubMed  Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    CAS  PubMed  Google Scholar 

  • Cui X, Jin P, Gu L, Lu Z, Xue Y, Wei L et al (2013) Control of transposon activity by a histone H3K4 demethylase in rice. Proc Natl Acad Sci U S A 110:1953–1958

    PubMed Central  CAS  PubMed  Google Scholar 

  • DeFraia CT, Zhang X, Mou Z (2010) Elongator subunit 2 is an accelerator of immune responses in Arabidopsis thaliana. Plant J 64:511–523

    CAS  PubMed  Google Scholar 

  • DeFraia CT, Wang Y, Yao J, Mou Z (2013) Elongator subunit 3 positively regulates plant immunity through its histone acetyltransferase and radical S-adenosylmethionine domains. BMC Plant Biol 13:102

    PubMed Central  CAS  PubMed  Google Scholar 

  • Demetriou K, Kapazoglou A, Tondelli A, Francia E, Stanca MA, Bladenopoulos K et al (2009) Epigenetic chromatin modifiers in barley: I. Cloning, mapping and expression analysis of the plant specific HD2 family of histone deacetylases from barley, during seed development and after hormonal treatment. Physiol Plant 136:358–368

    CAS  PubMed  Google Scholar 

  • Deng X, Gu L, Liu C, Lu T, Lu F, Lu Z et al (2010) Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing. Proc Natl Acad Sci U S A A107:19114–19119

    Google Scholar 

  • Dhawan R, Luo H, Foerster AM, Abuqamar S, Du HN, Briggs SD, Scheid OM et al (2009) HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell 21:1000–1019

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ding Y, Avramova Z, Fromm M (2011) The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. Plant J 66:735–744

    CAS  PubMed  Google Scholar 

  • Ding B, Bellizzi Mdel R, Ning Y, Meyers BC, Wang GL (2012) HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice. Plant Cell 24:3783–3794

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dover J, Schneider J, Tawiah-Boateng MA, Wood A, Dean K, Johnston M et al (2002) Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem 277:28368–28371

    CAS  PubMed  Google Scholar 

  • Durand S, Bouché N, Perez Strand E, Loudet O, Camilleri C (2012) Rapid establishment of genetic incompatibility through natural epigenetic variation. Curr Biol 22:326–331

    CAS  PubMed  Google Scholar 

  • Dyachenko OV, Zakharchenko NS, Shevchuk TV, Bohnert HJ, Cushman JC, Buryanov YI (2006) Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biogeosciences 71:461–465

    CAS  Google Scholar 

  • Earley KW, Shook MS, Brower-Toland B, Hicks L, Pikaard CS (2007) In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation. Plant J 52:615–626

    CAS  PubMed  Google Scholar 

  • Falconer DS (1996) Introduction to quantitative genetics. Ronald Press Co., New York, pp 365

    Google Scholar 

  • Fang H, Liu X, Thorn G, Duan J, Tian L (2014) Expression analysis of histone acetyltransferases in rice under drought stress. Biochem Biophys Res Commun 443:400–405

    CAS  PubMed  Google Scholar 

  • Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford, pp 272

    Google Scholar 

  • Friso S, Choi S-W, Dolnikowski GG, Selhub J (2002) A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Anal Chem 74:4526–4531

    CAS  PubMed  Google Scholar 

  • Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fu W, Wu K, Duan J (2007) Sequence and expression analysis of histone deacetylases in rice. Biochem Biophys Res Commun 356:843–850

    CAS  PubMed  Google Scholar 

  • Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    CAS  PubMed  Google Scholar 

  • González RM, Ricardi MM, Iusem ND (2011) Atypical epigenetic mark in an atypical location: cytosine methylation at asymmetric (CNN) sites within the body of a non-repetitive tomato gene. BMC Plant Biol 11:94

    PubMed Central  PubMed  Google Scholar 

  • González RM, Ricardi MM, Iusem ND (2013) Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions. Epigenetics 8:864–872

    PubMed Central  PubMed  Google Scholar 

  • Han SK, Sang Y, Rodrigues A, Wu MF, Rodriguez PL, Wagner D (2012) The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell 24:4892–4906

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hark AT, Vlachonasios KE, Pavangadkar KA, Rao S, Gordon H, Adamakis ID et al (2009) Two Arabidopsis orthologs of the transcriptional coactivator ADA2 have distinct biological functions. Biochim Biophys Acta 1789:117–124

    CAS  PubMed  Google Scholar 

  • Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447:418–424

    CAS  PubMed  Google Scholar 

  • Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93:9821–9826

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    CAS  PubMed  Google Scholar 

  • Hu Y, Qin F, Huang L, Sun Q, Li C, Zhao Y et al (2009) Rice histone deacetylase genes display specific expression patterns and developmental functions. Biochem Biophys Res Commun 388:266–271

    CAS  PubMed  Google Scholar 

  • Huang L, Sun Q, Qin F, Li C, Zhao Y, Zhou DX (2007) Down-regulation of a SILENT INFORMATION REGULATOR2-related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice. Plant Physiol 144:1508–1519

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hwang WW, Venkatasubrahmanyam S, Ianculescu AG, Tong A, Boone C, Madhani HD (2003) A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell 11:261–266

    CAS  PubMed  Google Scholar 

  • Imhof A, Yang X-J, Ogryzko VV, Nakatani Y, Wolffe AP, Ge H (1997) Acetylation of general transcription factors by histone acetyltransferases. Curr Biol 7:689–692

    CAS  PubMed  Google Scholar 

  • Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84:131–176

    PubMed  Google Scholar 

  • Jelinic P, Stehle J-C, Shaw P (2006) The testis-specific factor CTCFL cooperates with the protein methyltransferase PRMT7 in H19 imprinting control region methylation. PLoS Biol 4:e355

    PubMed Central  PubMed  Google Scholar 

  • Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N et al (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5:e1000530

    PubMed Central  PubMed  Google Scholar 

  • Kaldis A, Tsementzi D, Tanriverdi O, Vlachonasios KE (2011) Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses. Planta 233:749–762

    CAS  PubMed  Google Scholar 

  • Kapazoglou A, Tondelli A, Papaefthimiou D, Ampatzidou H, Francia E, Stanca MA et al (2010) Epigenetic chromatin modifiers in barley: IV. The study of barley polycomb group (PcG) genes during seed development and in response to external ABA. BMC Plant Biol 10:73

    PubMed Central  PubMed  Google Scholar 

  • Karan R, DeLeon T, Biradar H, Subudhi PK (2012) Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS ONE 7:e40203

    PubMed Central  CAS  PubMed  Google Scholar 

  • Katz JE, Dlakić M, Clarke S (2003) Automated identification of putative methyltransferases from genomic open reading frames. Mol Cell Proteomics 2:525–540

    CAS  PubMed  Google Scholar 

  • Khan AR, Enjalbert J, Marsollier A-C, Rousselet A, Goldringer I, Vitte C (2013) Vernalization treatment induces site-specific DNA hypermethylation at the VERNALIZATION-A1 (VRN-A1) locus in hexaploid winter wheat. BMC Plant Biol 13:209

    PubMed Central  PubMed  Google Scholar 

  • Kim KC, Lai Z, Fan B, Chen Z (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20:2357–2371

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JM, To TK, Nishioka T, Seki M (2010) Chromatin regulation functions in plant abiotic stress responses. Plant Cell Environ 33:604–611

    PubMed  Google Scholar 

  • Klose RJ, Zhang Y (2007) Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 8:307–318

    CAS  PubMed  Google Scholar 

  • Krause CD, Yang Z-H, Kim Y-S, Lee J-H, Cook JR, Pestka S (2007) Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential. Pharmacol Ther 113:50–87

    CAS  PubMed  Google Scholar 

  • Lauria M, Rupe M, Guo M, Kranz E, Pirona R, Viotti A et al (2004) Extensive maternal DNA hypomethylation in the endosperm of Zea mays. Plant Cell 16:510–522

    PubMed Central  CAS  PubMed  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li C, Huang L, Xu C, Zhao Y, Zhou D-X (2011) Altered levels of histone deacetylase OsHDT1 affect differential gene expression patterns in hybrid rice. PLoS ONE 6:e21789

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li X, Zhu J, Hu F, Ge S, Ye M, Xiang H et al (2012) Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genomics 13:300

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, Cardoso MA, Ferreira PCG (2010) Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS ONE 5:e10326

    PubMed Central  PubMed  Google Scholar 

  • Liu C, Lu F, Cui X, Cao X (2010) Histone methylation in higher plants. Annu Rev Plant Biol 61:395–420

    CAS  PubMed  Google Scholar 

  • Liu X, Luo M, Zhang W, Zhao J, Zhang J, Wu K et al (2012) Histone acetyltransferases in rice (Oryza sativa L.): phylogenetic analysis, subcellular localization and expression. BMC Plant Biol 12:145

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luo M, Wang YY, Liu X, Yang S, Lu Q, Cui Y et al (2012) HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. J Exp Bot 63:3297–3306

    PubMed Central  CAS  PubMed  Google Scholar 

  • Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ et al (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    CAS  PubMed  Google Scholar 

  • Mao Y, Pavangadkar KA, Thomashow MF, Triezenberg SJ (2006) Physical and functional interactions of Arabidopsis ADA2 transcriptional coactivator proteins with the acetyltransferase GCN5 and with the cold-induced transcription factor CBF1. Biochim Biophys Acta (BBA) Gene Struct Expr 1759:69–79

    CAS  Google Scholar 

  • Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H et al (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135–1138

    CAS  PubMed  Google Scholar 

  • McBride AE, Silver PA (2001) State of the arg: protein methylation at arginine comes of age. Cell 106:5–8

    CAS  PubMed  Google Scholar 

  • Mirouze M, Lieberman-Lazarovich M, Aversano R, Bucher E, Nicolet J, Reinders J et al (2012) Loss of DNA methylation affects the recombination landscape in Arabidopsis. Proc Natl Acad Sci U S A 109:5880–5885

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mlynárová L, Nap J, Bisseling T (2007) The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress. Plant J 51:874–885

    PubMed  Google Scholar 

  • Ng DW, Wang T, Chandrasekharan MB, Aramayo R, Kertbundit S, Hall TC (2007) Plant SET domain-containing proteins: structure, function and regulation. Biochim Biophys Acta 1769:316–329

    PubMed Central  CAS  PubMed  Google Scholar 

  • Noh B, Lee SH, Kim HJ, Yi G, Shin EA, Lee M et al (2004) Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. Plant Cell 16:2601–2613

    PubMed Central  CAS  PubMed  Google Scholar 

  • Palma K, Thorgrimsen S, Malinovsky FG, Fiil BK, Nielsen HB, Brodersen P et al (2010) Autoimmunity in Arabidopsis acd11 is mediated by epigenetic regulation of an immune receptor. PLoS Pathog 6:e1001137

    PubMed Central  PubMed  Google Scholar 

  • Papaefthimiou D, Tsaftaris A (2012a) Significant induction by drought of HvPKDM7-1, a gene encoding a jumonji-like histone demethylase homologue in barley (H. vulgare). Acta Physiol Plant 34:1187–1198

    CAS  Google Scholar 

  • Papaefthimiou D, Tsaftaris AS (2012b) Characterization of a drought inducible trithorax-like H3K4 methyltransferase from barley. Biol Plant 56:683–692

    CAS  Google Scholar 

  • Papaefthimiou D, Likotrafiti E, Kapazoglou A, Bladenopoulos K, Tsaftaris A (2010) Epigenetic chromatin modifiers in barley: III. Isolation and characterization of the barley GNAT-MYST family of histone acetyltransferases and responses to exogenous ABA. Plant Physiol Biochem 48:98–107

    CAS  PubMed  Google Scholar 

  • Pavangadkar K, Thomashow MF, Triezenberg SJ (2010) Histone dynamics and roles of histone acetyltransferases during cold-induced gene regulation in Arabidopsis. Plant Mol Biol 74:183–200

    CAS  PubMed  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    CAS  PubMed  Google Scholar 

  • Qian Y, Xi Y, Cheng B, Zhu S, Kan X (2014) Identification and characterization of the SET domain gene family in maize. Mol Biol Rep 41:1341–1354

    CAS  PubMed  Google Scholar 

  • Raj S, Bräutigam K, Hamanishi ET, Wilkins O, Thomas BR, Schroeder W et al (2011) Clone history shapes Populus drought responses. Proc Natl Acad Sci U S A 108:12521–12526

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reinders J, Wulff BBH, Mirouze M, Marí-Ordóñez A, Dapp M, Rozhon W et al (2009) Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev 23:939–950

    PubMed Central  CAS  PubMed  Google Scholar 

  • Richards CL, Bossdorf O, Verhoeven KJF (2010) Understanding natural epigenetic variation. New Phytol 187:562–564

    PubMed  Google Scholar 

  • Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14:1163–1175

    CAS  PubMed  Google Scholar 

  • Sano H, Kamada I, Youssefian S, Katsumi M, Wabiko H (1990) A single treatment of rice seedlings with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA. Mol Gen Genet MGG 220:441–447

    CAS  Google Scholar 

  • Shafiq S, Berr A, Shen W-H (2014) Combinatorial functions of diverse histone methylations in Arabidopsis thaliana flowering time regulation. New Phytol 201:312–322

    CAS  PubMed  Google Scholar 

  • Shan X, Wang X, Yang G, Wu Y, Su S, Li S et al (2013) Analysis of the DNA methylation of maize (Zea mays L.) in response to cold stress based on methylation-sensitive amplified polymorphisms. J Plant Biol 56:32–38

    CAS  Google Scholar 

  • Sharma R, Mohan Singh RK, Malik G, Deveshwar P, Tyagi AK, Kapoor S et al (2009) Rice cytosine DNA methyltransferases – gene expression profiling during reproductive development and abiotic stress. FEBSJ 276:6301–6311

    CAS  Google Scholar 

  • Shvarts Iu B, Kahn TG, Pirrotta V (2010) Polycomb and trithorax control genome expression by determining the alternative epigenetic states of chromatin for key developmental regulators. Genetika 46:1413–1416

    CAS  PubMed  Google Scholar 

  • Singer-Sam J, Grant M, LeBon JM, Okuyama K, Chapman V, Monk M et al (1990) Use of a HpaII-polymerase chain reaction assay to study DNA methylation in the Pgk-1 CpG island of mouse embryos at the time of X-chromosome inactivation. Mol Cell Biol 10:4987–4989

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    CAS  PubMed  Google Scholar 

  • Song Y, Ji D, Li S, Wang P, Li Q, Xiang F (2012) The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS ONE 7:e41274

    PubMed Central  CAS  PubMed  Google Scholar 

  • Springer NM (2013) Epigenetics and crop improvement. Trends Genet 29:241–247

    CAS  PubMed  Google Scholar 

  • Sridha S, Wu K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J 46:124–133

    CAS  PubMed  Google Scholar 

  • Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459

    PubMed Central  CAS  PubMed  Google Scholar 

  • Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746

    CAS  PubMed  Google Scholar 

  • Stockinger EJ, Mao Y, Regier MK, Triezenberg SJ, Thomashow MF (2001) Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res 29:1524–1533

    PubMed Central  CAS  PubMed  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    CAS  PubMed  Google Scholar 

  • Sun Q, Zhou DX (2008) Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development. Proc Natl Acad Sci U S A 105:13679

    PubMed Central  CAS  PubMed  Google Scholar 

  • To TK, Nakaminami K, Kim JM, Morosawa T, Ishida J, Tanaka M et al (2011) Arabidopsis HDA6 is required for freezing tolerance. Biochem Biophys Res Commun 406:414–419

    CAS  PubMed  Google Scholar 

  • Turck F, Roudier F, Farrona S, Martin-Magniette M-L, Guillaume E, Buisine N et al (2007) Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet 3:e86

    PubMed Central  PubMed  Google Scholar 

  • Unnikrishnan A, Gafken PR, Tsukiyama T (2010) Dynamic changes in histone acetylation regulate origins of DNA replication. Nat Struct Mol Biol 17:430–437

    PubMed Central  CAS  PubMed  Google Scholar 

  • van Dijk K, Ding Y, Malkaram S, Riethoven JJ, Liu R, Yang J et al (2010) Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana. BMC Plant Biol 10:238

    PubMed Central  PubMed  Google Scholar 

  • Vaughn MW, Tanurdzić M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD et al (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5:e174

    PubMed Central  PubMed  Google Scholar 

  • Vignali M, Hassan AH, Neely KE, Workman JL (2000) ATP-dependent chromatin-remodeling complexes. Mol Cell Biol 20:1899–1910

    PubMed Central  CAS  PubMed  Google Scholar 

  • Visser ME (2008) Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc Biol Sci/R Soc 275:649–659

    Google Scholar 

  • Vlachonasios KE, Thomashow MF, Triezenberg SJ (2003) Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell Online 15:626–638

    CAS  Google Scholar 

  • Wada Y, Miyamoto K, Kusano T, Sano H (2004) Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol Genet Genomics 271:658–666

    CAS  PubMed  Google Scholar 

  • Walley JW, Rowe HC, Xiao Y, Chehab EW, Kliebenstein DJ, Wagner D, Dehesh K et al (2008) The chromatin remodeler SPLAYED regulates specific stress signaling pathways. PLoS Pathog 4:e1000237

    PubMed Central  PubMed  Google Scholar 

  • Wang C, Gao F, Wu J, Dai J, Wei C, Li Y (2010) Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression. Plant Cell Physiol 51:1291–1299

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J et al (2011) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62:1951–1960

    PubMed Central  CAS  PubMed  Google Scholar 

  • Woo HR, Pontes O, Pikaard CS, Richards EJ (2007) VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization. Genes Dev 21:267

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu K, Zhang L, Zhou C, Yu CW, Chaikam V (2008) HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59:225–234

    CAS  PubMed  Google Scholar 

  • Xu L, Zhao Z, Dong A, Soubigou-Taconnat L, Renou J-P, Steinmetz A et al (2008) Di- and Tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol 28:1348–1360

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yaish MW, Peng M, Rothstein SJ (2014) Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP). In: Sanchez-Serrano JJ, Salinas J (eds) Arabidopsis protocols, vol 82. Humana Press, Totowa, pp 285–298

    Google Scholar 

  • Yu A, Lepère G, Jay F, Wang J, Bapaume L, Wang Y et al (2013) Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc Natl Acad Sci U S A 110:2389–2394

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zemach A, Kim MY, Silva P, Rodrigues JA, Dotson B, Brooks MD et al (2010) Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci U S A 107:18729–18734

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen H et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    CAS  PubMed  Google Scholar 

  • Zhang K, Sridhar VV, Zhu J, Kapoor A, Zhu JK (2007) Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PLoS ONE 2:e1210

    PubMed Central  PubMed  Google Scholar 

  • Zhang M, Kimatu JN, Xu K, Liu B (2010) DNA cytosine methylation in plant development. J Genet Genomics = Yi chuan xue bao 37:1–12

    Google Scholar 

  • Zhang Z, Zhang S, Zhang Y, Wang X, Li D, Li Q et al (2011) Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. Plant Cell 23:396–411

    PubMed Central  PubMed  Google Scholar 

  • Zhang Y-Y, Fischer M, Colot V, Bossdorf O (2013) Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytol 197:314–322

    CAS  PubMed  Google Scholar 

  • Zhou C, Zhang L, Duan J, Miki B, Wu K (2005) HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell Online 17:1196–1204

    CAS  Google Scholar 

  • Zhou X, Hua D, Chen Z, Zhou Z, Gong Z (2009) Elongator mediates ABA responses, oxidative stress resistance and anthocyanin biosynthesis in Arabidopsis. Plant J 60:79–90

    CAS  PubMed  Google Scholar 

  • Zong W, Zhong X, You J, Xiong L (2012) Genome-wide profiling of histone H3K4-tri-methylation and gene expression in rice under drought stress. Plant Mol Biol 81:175–188

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarfraz Shafiq Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Shafiq, S., Khan, A.R. (2015). Plant Epigenetics and Crop Improvement. In: Barh, D., Khan, M., Davies, E. (eds) PlantOmics: The Omics of Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2172-2_6

Download citation

Publish with us

Policies and ethics