Skip to main content

Applications of Bioinformatics in Plant and Agriculture

  • Chapter
  • First Online:
PlantOmics: The Omics of Plant Science

Abstract

The high-throughput technologies generating large-scale biological data, as well as the development of related computational tools, have united global efforts and brought revolutionary changes to the research of biology during the last decade. Today, biologists work in association with scientists from a broad spectrum of disciplines to unravel how complex biological systems work. Bioinformatics is a multidisciplinary field that makes use of computers to store and analyse molecular biology information with integration of statistical algorithms. The genome sequencing of a number of organisms has led to the discovery of many fascinating things. Today, the world feels the need of this discipline to save resources and time. This chapter emphasises on a number of applications of bioinformatics in agriculture in view of functional genomics, data mining techniques, genome-wide association studies, high-performance computing facilities in agriculture and various bioinformatics tools/databases important for breeders, biotechnologists and pathologists. Agricultural genomics leads to the global understanding of plant/animal and pathogen biology, and its application would be beneficial for agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Anthony RV, Scheaffer AN, Wright CD, Regnault TR (2003) Ruminant models of prenatal growth restriction. Reprod Suppl 61:183–194

    CAS  Google Scholar 

  • Barbazuk WB, Bedell JA, Rabinowicz PD (2005) Reduced representation sequencing: a success in maize and a promise for other plant genomes. BioEssays 27:839–848

    Article  CAS  PubMed  Google Scholar 

  • Baridam BB (2012) More work on K-means clustering algorithm: the dimensionality problem. Int J Comput Appl 44(2):23–30

    Google Scholar 

  • Bouchet S, Pot D, Deu M et al (2012) Genetic structure, linkage disequilibrium and signature of selection in sorghum: lessons from physically anchored DArT markers. PLoS One 7(3):e33470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Casa AM, Mitchell SE, Jensen JD et al (2006) Evidence for a selective sweep on chromosome 1 of cultivated sorghum. Crop Sci 46(S1):S27–S40

    Google Scholar 

  • Chou PY, Fasman GD (1974) Prediction of protein conformation. Biochemistry 13(2):222–245. doi:10.1021/bi00699a002

    Article  CAS  PubMed  Google Scholar 

  • Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge/New York

    Book  Google Scholar 

  • Dayhoff MO, Eck RV, Park CM (1972) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure, 5th edn. National Biomedical Research Foundation, Washington, DC

    Google Scholar 

  • de AlencarFigueiredo LF, Sine B, Chantereau J et al (2010) Variability of grain quality in sorghum: association with polymorphism in Sh2, Bt2, SssI, Ae1, Wx and O2. Theor Appl Genet 121(6):1171–1185

    Article  Google Scholar 

  • Eyras E, Reymond A, Castelo R, Bye JM, Camara F, Flicek P, Huckle EJ, Parra G, Shteynberg DD, Wyss C, Rogers J, Antonarakis SE, Birney E, Guigo R, Brent MR (2005) Gene finding in the chicken genome. BMC Bioinforma 6(1):131

    Article  Google Scholar 

  • Gill BS, Appels R, Botha-Oberholster AM et al (2004) A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics 168(2):1087–1096

    Article  PubMed Central  PubMed  Google Scholar 

  • Gnerrea S, MacCallum I, Przybyiski D et al (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci USA 108(4):1513–1518

    Article  Google Scholar 

  • He D, Hormozdiari F, Furlotte N, Eskin E (2011) Efficient algorithms for tandem copy number variation reconstruction in repeat-rich regions. Bioinformatics 27(11):1513–1520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hertz J, Krogh A, Palmer RG (1991) Introduction to the theory of neural computing. Addison-Wesley Publishing Company, Redwood City

    Google Scholar 

  • Hillier LW, Miler W, Birney E et al (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432(7018):695–716. doi:10.1038/nature03154

    Article  CAS  Google Scholar 

  • How to Feed the World in 2050 (2009) Office of the Director, Agricultural Development Economics Division, Economic and Social Development Department www.fao.org/wsfs/forum2050/wsfs-background-documents/wsfs-expert-papers/en/

  • Huang X, Wei X, Sang T et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42(11):961–967

    Article  CAS  PubMed  Google Scholar 

  • Hufford MB, Xu X, van Heerwaarden J et al (2012) Comparative population genomics of maize domestication and improvement. Nat Genet 44(7):808–811

    Article  CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436(7052):793–800

    Article  Google Scholar 

  • Jiao Y, Zhao H, Ren L et al (2012) Genome-wide genetic changes during modern breeding of maize. Nat Genet 44(7):812–815

    Article  CAS  PubMed  Google Scholar 

  • Lewis SE (2005) Gene ontology: looking backwards and forwards. Genome Biol 6(1):103

    Article  PubMed Central  PubMed  Google Scholar 

  • Li R, Fan W, Tian G et al (2010) The sequence and de novo assembly of the giant panda genome. Nature 463:311–317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Manikanandakumar K (2009) Dictionary of bioinformatics. MJP Publishers, Chennai

    Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74:560–564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCarthy FM, Wang N, Magee GB, Nanduri B, Lawrence ML, Camon EB, Barrell DG, Hill DP, Dolan ME, Williams WP, Luthe DS, Bridges SM, Burgess SC (2006) AgBase: a functional genomics resource for agriculture. BMC Genomics 7:229

    Article  PubMed Central  PubMed  Google Scholar 

  • McCarthy MI, Abecasis GR, Cardon LR et al (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Genet 9:356–369

    Article  CAS  Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48(3):443–453

    Article  CAS  PubMed  Google Scholar 

  • Prather RS, Hawley RJ, Carter DB, Lai L, Greenstein JL (2003) Transgenic swine for biomedicine and agriculture. Theriogenology 59(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Protein Identification Resource http://pir.georgetown.edu/

  • Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:441–448

    Article  CAS  PubMed  Google Scholar 

  • Sonstegard TS, Connor EE (2004) Sequencing and mapping of the bovine thyroid hormone response element (spot14) gene. Germplasm Release. Accession number AY656814

    Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nat Lett 485:635–641. doi:10.1038/nature11119

    Article  Google Scholar 

  • Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nature 13:36–46

    CAS  Google Scholar 

  • Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  • Varshney RK, Chen W, Li Y et al (2011) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    Article  PubMed  Google Scholar 

  • Venter J, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291(5507):1304–1351. doi:10.1126/science.1058040

    Article  CAS  PubMed  Google Scholar 

  • Ware DH, Jaiswal P, Ni J et al (2002) Gramene, a tool for grass genomics. Plant Physiol 130(4):1606–1613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan Q, Ouyang S, Liu J, Suh B, Cheung F, Sultana R, Lee D, Quackenbush J, Buell CR (2003) The TIGR rice genome annotation resource: annotating the rice genome and creating resources for plant biologists. Nucleic Acids Res 31(1):229–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarika Jaiswal Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Iquebal, M.A., Jaiswal, S., Mukhopadhyay, C.S., Sarkar, C., Rai, A., Kumar, D. (2015). Applications of Bioinformatics in Plant and Agriculture. In: Barh, D., Khan, M., Davies, E. (eds) PlantOmics: The Omics of Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2172-2_27

Download citation

Publish with us

Policies and ethics