Skip to main content

Actinorhizal and Rhizobial-Legume Symbioses for Alleviation of Abiotic Stresses

  • Chapter
  • First Online:
Plant Microbes Symbiosis: Applied Facets

Abstract

Plant symbiotic interactions with nitrogen-fixing bacteria could be used in agricultural and forest soils under harsh conditions and for land reclamation. These associations include rhizobia interacting with legumes species and the actinobacterium Frankia interacting with actinorhizal plants. These plants are distributed worldwide and suffer in many areas – especially in arid and semiarid regions from harsh biotic and abiotic conditions. Abiotic stress conditions include climatic conditions, soil characteristics, water and nutrient availability, salinity, and soil contamination by heavy metals, xenobiotics, and toxins. Thus, the improvement of symbiotic nitrogen fixation under stress conditions may rely on strategies devised to select more tolerant plant-bacteria associations and to use successfully efficient synergistic systems such as those involving mycorrhizal fungi and rhizobacteria, particularly plant growth-promoting rhizobacteria (PGPR). This chapter focuses on main stress conditions affecting plant-bacteria symbioses with emphasis on mechanisms that underpin plant resistance to stress. Biological strategies involving microbial inoculants aiming to protect and improve plant symbioses against detrimental effects of abiotic stresses so as to enhance the crop production in such conditions are discussed. In addition, plant-bacteria symbioses can also be used to promote the establishment of perennial vegetation that might limit the heavy metal pollution of soils and consequently represent an effective management procedure in disturbed soils. This chapter also focuses on main techniques successfully used for the purpose of land reclamation by plant-bacteria symbioses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    CAS  Google Scholar 

  • Arnone JA, Kohls SJ, Baker DD (1994) Nitrate effects on nodulation and nitrogenase activity of actinorhizal Casuarina studied in split-root systems. Soil Biol Biochem 26:599–606

    CAS  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816

    PubMed  CAS  Google Scholar 

  • Arora NK, Singhal V, Maheshwari DK (2006) Salinity-induced accumulation of poly-b- hydroxyl butyrate in rhizobia indicating its role in cell protection. World J Microbiol Biotechnol 22:603–606

    CAS  Google Scholar 

  • Arshad M, Sharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC deaminase partially eliminate the effects of drought stress on growth, yield and ripening of pea (Pisum sativum L). Pedosphere 18:611–620

    Google Scholar 

  • Asfaw A, Almekinders CJM, Blair MW, Struik PC (2012) Participatory approach in common bean (Phaseolus vulgaris L.) breeding for drought tolerance for southern Ethiopia. Plant Breed 131:125–134

    Google Scholar 

  • Ashraf M, Bashir A (2003) Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. J Flora 198:486–498

    Google Scholar 

  • Azcón R, El-Atrash F, Barea JM (1988) Influence of mycorrhiza versus soluble phosphate on growth, nodulation, and N2 fixation 15N in alfalfa under different levels of water potential. Biol Fertil Soils 7:28–31

    Google Scholar 

  • Babu G, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250(251):477–483

    PubMed  Google Scholar 

  • Baker A, Parsons R (1997) Evidence for N feedback regulation of N2 fixation in Alnus glutinosa L. J Exp Bot 48:67–73

    CAS  Google Scholar 

  • Barea JM, Azcón-Aguilar C (1983) Mycorrhizas and their significance in nodulating nitrogen fixing plants. Adv Agron 36:1–54

    Google Scholar 

  • Barea JM, Werner D, Azcón-Guilar C, Azcón R (2005) Interactions of arbuscular mycorrhiza and nitrogen-fixing symbiosis in sustainable agriculture. In: Werner D, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology and the environment. Springer, Dordrecht, pp 199–222

    Google Scholar 

  • Barritt AR, Facelli JM (2001) Effects of Casuarina pauper litter and grove soil on emergence and growth of understorey species in arid land of South Australia. J Arid Environ 49:569–579

    Google Scholar 

  • Bélanger PA, Beaudin J, Roy S (2011) High-throughput screening of microbial adaptation to environmental stress. J Microbiol Methods 85:92–97

    PubMed  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when inoculated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107

    PubMed  CAS  Google Scholar 

  • Bollman MI, Vessey JK (2006) Differential effects of nitrate and ammonium supply on nodule initiation, development and distribution on roots of pea (Pisum sativum). Can J Bot 84:893–903

    CAS  Google Scholar 

  • Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, Lopez R, Chamber MA, Palomares AJ (2005) Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biol Biochem 37:1131–1140

    CAS  Google Scholar 

  • Carro L, Sproer C, Alonso P, Trujillo ME (2012) Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 35:73–80

    PubMed  Google Scholar 

  • Chaia EE, Wall LG, Huss-Danell K (2010) Life in soil by the actinorhizal root nodule endophyte Frankia: a review. Symbiosis 51:201–226

    Google Scholar 

  • Chanway CP, Hynes RK, Nelson LM (1989) Plant growth-promoting rhizobacteria: effects on growth and nitrogen fixation of lentil (Lens esculenta Moench) and pea (Pisum sativum L.). Soil Biol Biochem 21:511–517

    Google Scholar 

  • Chapin DM, Bliss LC, Bledsoe LJ (1991) Environmental regulation of dinitrogen fixation in a high arctic lowland ecosystem. Can J Bot 69:2744–2755

    Google Scholar 

  • Chapin FS III, Walker RL, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175

    Google Scholar 

  • Chebotar VKK, Asis CA, Akao S (2001) Production of growth-promoting substances and high colonization ability of rhizobacteria enhance the nitrogen fixation of soybean when coinoculated with Bradyrhizobium japonicum. Biol Fertil Soils 34:427–432

    CAS  Google Scholar 

  • Chen WM, Moulin L, Bontemps C, Vandamme P, Béna G, Boivin-Masson C (2003) Legume symbiotic nitrogen fixation by β-proteobacteria is widespread in nature. J Bacteriol 185:7266–7272

    PubMed  CAS  PubMed Central  Google Scholar 

  • Claessens H, Oosterbaan A, Savill P, Rondeux J (2010) A review of the characteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry 83:163–175

    Google Scholar 

  • Cordovilla MP, Ligero F, Lluch C (1999) Effect of salinity on growth, nodulation and nitrogen assimilation in nodules of faba bean (Vicia faba L.). Appl Soil Ecol 11:1–7

    Google Scholar 

  • Craig GF, Atkins CA, Bell DT (1991) Effect of salinity on growth of four strains of Rhizobium and their infectivity and effectiveness on two species of Acacia. Plant Soil 133:253–262

    CAS  Google Scholar 

  • Cusato MS, Tortosa RD, Valiente L, Barneix AJ, Puelles MM (2007) Effects of Zn2+ on nodulation and growth of a South American actinorhizal plant, Discaria americana (Rhamnaceae). World J Microbiol Biotechnol 23:771–777

    CAS  Google Scholar 

  • Dardanelli MS, de Cordoba FJF, Espuny MR, Carvajal MAR, Diaz MES, Serrano AMG, Okon Y, Megias M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    CAS  Google Scholar 

  • Dardanelli MS, Fernandez de Cordoba FJ, Estévez J, Contreras R, Cubo MT, Rodriguez-Carvajal MA, Gil-Serrano AM, Lopez-Baena FJ, Bellogin R, Manyani H, Ollero FJ, Megias M (2012) Changes in flavonoids secreted by Phaseolus vulgaris roots in the presence of salt and the plant growth-promoting rhizobacterium Chryseobacterium balustinum. Appl Soil Ecol 57:31–38

    Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    PubMed  CAS  Google Scholar 

  • Dashadi M, Khosravi H, Moezzi A, Nadian H, Heidari M, Radjabi R (2011) Co- inoculation of Rhizobium and Azotobacter on growth indices of faba bean under water stress in the green house condition. Adv Stud Biol 3:373–385

    Google Scholar 

  • Dawson JO (2008) Ecology of actinorhizal plants. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht, pp 199–234

    Google Scholar 

  • Devries JD, Bennett JM, Albrecht SL, Boote KJ (1989) Water relations, nitrogenase activity and root development of three grain legumes in response to soil water deficits. Field Crop Res 21:215–226

    Google Scholar 

  • Diagne N, Diouf D, Svistoonoff S, Kane A, Noba K, Franche C, Bogusz D, Duponnois R (2013) Casuarina in Africa: distribution, role and importance of arbuscular mycorrhizal, ectomycorrhizal fungi and Frankia on plant development. J Environ Manag 128:204–209

    CAS  Google Scholar 

  • Díaz G, Azcón-Aguilar C, Honrubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant Soil 180:241–249

    Google Scholar 

  • Diem HG, Dommergues YR (1990) Current and potential uses and management of Casuarinaceae in the tropics and subtopics. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, New York, pp 317–342

    Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2010) Co-inoculation of Pseudomonas spp. with Rhizobium improves growth and symbiotic performance of fodder galega Galega orientalis Lam. Eur J Soil Biol 46:269–272

    CAS  Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013a) Alleviation of salt stress of symbiotic Galega officinalis L. (Goat’s Rue) by co-inoculation of Rhizobium with root colonizing Pseudomonas. Plant Soil 369:453–465

    Google Scholar 

  • Egamberdieva D, Jabborova D, Wirth S (2013b) Alleviation of salt stress in legumes by co-inoculation with Pseudomonas and Rhizobium. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 291–303

    Google Scholar 

  • Egamberdiyeva D, Islam KR (2008) Salt tolerant rhizobacteria: plant growth promoting traits and physiological characterization within ecologically stressed environment. In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley-VCH Verlag GmbH & Co, Weinheim, pp 257–281

    Google Scholar 

  • Egamberdiyeva D, Qarshieva D, Davranov K (2004) The use of Bradyrhizobium japonicum to enhance growth and yield of soybean varieties in Uzbekistan conditions. J Plant Growth Regul 23:54–57

    CAS  Google Scholar 

  • Elboutahiri N, Thami-Alami I, Udupa SM (2010) Phenotypic and genetic diversity in Sinorhizobium meliloti and S. medicae from drought and salt affected regions of Morocco. BMC Microbiol 10:15

    PubMed  PubMed Central  Google Scholar 

  • Elisondo Barron J, Pasini RJ, Davis DW, Stuthman DD, Graham PH (1999) Response to selection for seed yield and nitrogen (N2) fixation in common bean (Phaseolus vulgaris L.). Field Crops Res 62:119–128

    Google Scholar 

  • Elkoca E, Turan M, Donmez MF (2010) Effects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv. phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris l. cv. ‘elkoca-05’). J Plant Nut 33:2104–2119

    CAS  Google Scholar 

  • El-Lakany MH (1983) A review of breeding drought resistant Casuarina for shelterbelt establishment in arid region with special reference to Egypt. For Ecol Manag 6:129–137

    Google Scholar 

  • El-Lakany MH, Luard EJ (1982) Comparative salt tolerance of selected Casuarina species. Aust For Res 13:11–20

    Google Scholar 

  • Elo S, Maunuksela L, Salkinoja-Salonen M, Smolander A, Haahtela K (2000) Humus bacteria of Norway spruce stands: plant growth promoting properties and birch, red fescue and alder colonizing capacity. FEMS Microbiol Ecol 31:143–152

    PubMed  CAS  Google Scholar 

  • Elumalai S, Raaman N (2009) In vitro synthesis of Frankia and mycorrhiza with Casuarina equisetifolia and ultrastructure of root system. Ind J Exp Biol 47:289–297

    Google Scholar 

  • Estevez J, Dardanelli MS, Megias M, Rodriguez-Navarro DN (2009) Symbiotic performance of common bean and soybean co inoculated with rhizobia and Chryseobacterium balustinum Aur9 under moderate saline conditions. Symbiosis 49:29–36

    Google Scholar 

  • FAO (2005) Global network on integrated soil management for sustainable use of salt-affected soils, Italy. FAO Services, Rome. http://www.fao.org/ag/agl/agll/spush

  • Fessenden RJ, Sutherland BJ (1979) The effect of excess soil copper on the growth of black spruce and green alder seedling. Bot Gaz 140:S82–S87

    Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Google Scholar 

  • Freire JRJ (1992) Fixação do nitrogênio pela simbiose rizóbio/leguminosas. In: Cardoso EJN, Tsai SNM, Neves MC (eds) Microbiologia do solo. Sociedade Brasileira de Ciência do Solo, Campinas, pp 121–140

    Google Scholar 

  • Gardner LC (1986) Mycorrhizae of actinorhizal plants. Mircen J 2:147–160

    Google Scholar 

  • Gentili F, Wall LG, Huss-Danell K (2006) Effects of phosphorus and nitrogen on nodulation are seen already at the stage of early cortical cell divisions in Alnus incana. Ann Bot 98:309–315

    PubMed  PubMed Central  Google Scholar 

  • Gherbi H, Markman K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Péret B, Laplaze L, Franche C, Parniske M, Bogusz D (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Natl Acad Sci U S A 105:4928–4932

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ghittoni NE, Bueno MA (1996) Changes in the cellular content of trehalose in four peanut rhizobia strains cultured under hypersalinity. Symbiosis 20:117–127

    CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (2009) Heavy metals and soil microbes. Soil Biol Biochem 41:2031–2037

    CAS  Google Scholar 

  • Girgis MG, Ishac YZ, Diem HG, Dommergues YR (1992) Selection of salt tolerant Casuarina glauca and Frankia. Acta Oecol 13:443–451

    Google Scholar 

  • Goicoechea N, Szalai G, Antolín MC, Sánchez-Díaz M, Paldi E (1998) Influence of arbuscular mycorrhizae and Rhizobium on free polyamines and proline levels in water-stressed alfalfa. J Plant Physiol 153:706–711

    CAS  Google Scholar 

  • Graves WR, Gallagher JL (2003) Resistance to salinity of Alnus maritima from distinct wetlands: symptoms of salt injury, comparison to other shrubs, and effect of inundation. Wetlands 23:394–405

    Google Scholar 

  • Gupta A, Phung LT, Taylor DE, Silver S (2001) Diversity of silver resistance genes in IncH incompatibility group plasmids. Microbiology 147:3393–3402

    PubMed  CAS  Google Scholar 

  • Gupta DK, Rai UN, Sinha S, Tripathi RD, Nautiyal BD, Rai P, Inouhe M (2004) Role of Rhizobium (CA-1) inoculation in increasing growth and metal accumulation in Cicer arietinum L. growing under fly-ash stress condition. Bull Environ Contam Toxicol 73:424–431

    PubMed  CAS  Google Scholar 

  • Hafeez FY, Sohail Hameed A, Malik KA (1999) Frankia and Rhizobium strains as inoculum for fast growing trees in saline environment. Pak J Bot 31:173–182

    Google Scholar 

  • Hamaoui B, Abbadi JM, Burdman S, Rashid A, Sarig S, Okon Y (2001) Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum L.) and faba beans (Vicia faba L.) under different growth conditions. Agronomie 21:553–560

    Google Scholar 

  • Han HS, Lee KD (2005) Physiological responses of soybean-inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res J Agric Biol Sci 1:216–221

    Google Scholar 

  • Hartel PG, Alexander M (1986) Role of extracellular polysaccharide production and clays in the desiccation tolerance of cowpea Bradyrhizobia. Soil Sci Soc Am J 50:1193–1198

    CAS  Google Scholar 

  • He XH, Critchley C (2008) Frankia nodulation, mycorrhization and interactions between Frankia and mycorrhizal fungi in Casuarina plants. In: Varma A (ed) Mycorrhizae state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edn. Springer, Berlin/Heidelberg, pp 767–781

    Google Scholar 

  • Hensley DL, Carpenter PL (1987) The effect of cadmium on growth and acetylene reduction in Alnus glutinosa. Hortic Sci 222:69–70

    Google Scholar 

  • Jin L, Sun XW, Wang XJ, Shen YY, Hou FJ, Chang SH, Wang C (2010) Synergistic interactions of arbuscular mycorrhizal fungi and rhizobia promoted the growth of Lathyrus sativus under sulphate salt stress. Symbiosis 50:157–164

    CAS  Google Scholar 

  • Karimi A, Khodaverdiloo H, Sepehri M, Sadaghiani MR (2011) AMF and heavy metal contaminated soils. Afr J Microbiol Res 5:1571–1576

    CAS  Google Scholar 

  • Karthikeyan A, Deeparaj B, Nepolean P (2009) Reforestation in bauxite mine spoils with Casuarina equisetifolia frost and beneficial microbes. For Trees Livelihoods 19:153–165

    Google Scholar 

  • Kassem M, Capellano A, Gounot AM (1985) Effets du chlorure desodium sur la croissance in vitro, l’infectivite’ etl’efficience de Rhizobium meliloti. Mircen J 1:63–75

    CAS  Google Scholar 

  • Khan HR, Paull JG, Siddique KHM, Stoddard FL (2010) Faba bean breeding for drought-affected environments: a physiological and agronomic perspective. Field Crops Res 115:279–286

    Google Scholar 

  • Khan N, Mishra A, Chauhan PS, Nautiyal CS (2011) Induction of Paenibacillus lentimorbus biofilm by sodium alginate and CaCl2 alleviates drought stress in chickpea. Ann Appl Biol 159:372–386

    CAS  Google Scholar 

  • Knowlton S, Dawson JO (1983) Effects of Pseudomonas cepacia and cultural factors on the nodulation of Alnus roots by Frankia. Can J Bot 61:2877–2882

    Google Scholar 

  • Kouas S, Labidi N, Debez A, Abdelly C (2005) Effect of P on nodule formation and N fixation in bean. Agron Sustain Dev 25:389–393

    CAS  Google Scholar 

  • Kumar D (2005) Breeding for drought resistance. In: Ashraf M, Harris PJC (eds) Abiotic stress: plant resistance through breeding and molecular approaches. Haworth Press, New York, pp 145–175

    Google Scholar 

  • Lee W, Wood TK, Chen W (2006) Engineering TCE-degrading rhizobacteria for heavy metal accumulation and enhanced TCE degradation. Biotechnol Bioeng 95:399–403

    PubMed  CAS  Google Scholar 

  • Lefrancois E, Quoreshi A, Khasa D, Fung M, Whyte LG, Roy S, Greer C (2010) Fields performance of adler-Frankia symbionts for the reclamation of oil sands sites. Appl Soil Ecol 46:183–191

    Google Scholar 

  • Liu Y, Zhong C, Bai J, Zhang Y, Chen J (2003) The salt resistance experiment on four clones of Casuarina equisetifolia in tissue culture. Guangdong For Sci Technol 19:47–50

    Google Scholar 

  • Lorenc-Pluciñska G, Walentynowicz M, Alicja N (2013) Capabilities of alders (Alnus incana and A. glutinosa) to grow in metal-contaminated soil. Ecol Engine 58:214–227

    Google Scholar 

  • Luard EJ, El-Lakany MH (1984) Effects of Casuarina and Allocasuarina species of increasing sodium chloride concentrations in solution culture. Aust J Plant Physiol 11:471–481

    CAS  Google Scholar 

  • Lucas-Garcia JA, Probanza A, Ramos B, Colón-Flores JJ, Gutierrez-Mañéro FJ (2004) Effects of plant growth promoting rhizobacteria (PGPRs) on the biological nitrogen fixation, nodulation and growth of Lupinus albus I. cv. Multolupa. Eng Life Sci 4:71–77

    Google Scholar 

  • Mahler RL, Wollum AG (1981) The influence of soil water potential and soil texture on the survival of Rhizobium japonicum and Rhizobium leguminosarum isolates in the soil. Soil Sci Soc Am J 45:761–766

    Google Scholar 

  • Malik D, Sindhu S (2011) Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. cicer on nodulation and plant growth of chickpea Cicer arietinum. Physiol Mol Biol Plant 17:25–32

    CAS  Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618

    CAS  Google Scholar 

  • Marulanda A, Barea J-M, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    CAS  Google Scholar 

  • Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many Rhizobium recipes? Trends Microbiol 17:458–466

    PubMed  CAS  Google Scholar 

  • Mnasri B, Aouani ME, Mhamdi R (2007) Nodulation and growth of common bean (Phaseolus vulgaris) under water deficiency. Soil Biol Biochem 39:1744–1750

    CAS  Google Scholar 

  • Moreno LS, Maiti RK, Gonzales AN, Star JV, Foroughbakhch R, Gonzales HG (2000) Genotypic variability in bean cultivars (Phaseolus vulgaris L.) for resistance to salinity at the seedling stage. Ind Agric 44:1–12

    Google Scholar 

  • Muthukumar T, Udaiyan K (2010) Growth response and nutrient utilization of Casuarina equisetifolia seedlings inoculated with bioinoculants under tropical nursery conditions. New For 40:101–118

    Google Scholar 

  • Nambiar-Veetil M, Nair DN, Selvakesavan RK, Jayaraj RSC, Roopesh M, Prabhu SJ, Balasubramanian A, Venkatachalam R, Sowmiyarani KS, Sudha S, Bachpai VW, Franche C, Gherbi H, Svistoonoff S, Hocher V, Bogusz D, Vivekanandan R (2011) Development of an in silico gene bank for plant abiotic stresses: towards its utilization for molecular analysis of salt tolerant and susceptible Casuarina equisetifolia clones. In: Zhong C, Pinyopusarerk K, Kalinganire A, Franche C (eds) Improving smallholder livelihoods through improved casuarinas productivity. China Forestry Publishing House, Beijing, pp 144–151

    Google Scholar 

  • Nonnoi F, Chinnaswamy A, de la Torre VSG, de la Peña TC, Lucas MM, Pueyo JJ (2012) Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes (Medicago spp. and Trifolium spp.) growing in mercury-contaminated soils. Appl Soil Ecol 61:49–59

    Google Scholar 

  • Oliveira RS, Castro PML, Dodd JC, Vosátka M (2005) Synergistic effect of Glomus intraradices and Frankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenic sediment. Chemosphere 60:1462–1470

    PubMed  CAS  Google Scholar 

  • Olivera M, Tejera N, Iribarne C, Ocaña A, Lluch C (2004) Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): effect of phosphorus. Physiol Plant 121:498–505

    CAS  Google Scholar 

  • Orfanoudakis M, Wheeler CT, Hooker JE (2010) Both the arbuscular Mycorrhizal fungus Gigaspora rosea and Frankia increase root system branching and reduce root hair frequency in Alnus glutinosa. Mycorrhiza 20:117–126

    PubMed  Google Scholar 

  • Oshone R, Mansour SR, Tisa LS (2013) Effect of salt stress on the physiology of Frankia sp strain CcI6. J Biosci 38:699–702

    PubMed  CAS  Google Scholar 

  • Oufdou K, Benidire L, Lyubenova L, Daoui K, Fatemi ZA, Schröder P (2014) Enzymes of the glutathione-ascorbate cycle in leaves and roots of rhizobia-inoculated faba bean plants (Vicia faba L.) under salinity stress. Eur J Soil Biol 60:98–103

    CAS  Google Scholar 

  • Padmaja K, Prasad DDK, Prasad ARK (1990) Inhibition of chlorophyll synthesis in Phaseolus vulgaris seedlings by cadmium acetate. Photosynthetica 24:399–405

    CAS  Google Scholar 

  • Pang J, Tibbett M, Denton MD, Lambers H, Siddique KHM, Bolland MDA, Revell CK, Ryan MH (2010) Variation in seedling growth of 11 perennial legumes in response to phosphorus supply. Plant Soil 328:133–143

    CAS  Google Scholar 

  • Pawlowski K, Sirrenberg A (2003) Symbiosis between Frankia and actinorhizal plants: root nodules of non-legumes. Ind J Exp Biol 41:1165–1183

    CAS  Google Scholar 

  • Pérez-Palacios P, Agostini E, Ibañez SG, Talano MA, Caviedes MA, Rodriguez-Llorente ID, Pajuelo E (2013) Copper-roots: engineering transgenic tobacco hairy root for extreme Cu accumulation. Poster presentation at VIII Encuentro Latinoamericano y del Caribe de Biotecnología REDBIO, Argentina

    Google Scholar 

  • Pimentel C, Laffray D, Louguet P (1999) Intrinsic water use efficiency at the pollination stage as a parameter for drought tolerance selection in Phaseolus vulgaris. Physiol Plant 106:184–198

    CAS  Google Scholar 

  • Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143

    CAS  Google Scholar 

  • Probanza A, Lucas JA, Acero N, Gutierrez Mañero FJ (1996) The influence of native rhizobacteria on European alder (Alnus glutinosa (L.) Gaertn.) growth. Plant Soil 182:59–66

    CAS  Google Scholar 

  • Probanza A, Acero N, Ramos B, Gutierrez Mañero FJ (1997) Effects of European alder Alnus glutinosa L. Gaertn rhizobacteria on nodular metabolism and root development. Plant Growth Regul 22:145–149

    CAS  Google Scholar 

  • Rai R (1983) The salt tolerance of Rhizobium leguminosarum strains and lentil (Lens esculenta) genotypes and the effect of salinity on aspects of symbiotic nitrogen fixation. J Agric Sci 100:81–86

    CAS  Google Scholar 

  • Rajwar A, Sahgal M, Johri BN (2013) Legume–rhizobia symbiosis and interactions in agroecosystems. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 233–265

    Google Scholar 

  • Reddell P, Bowen GD, Robson AD (1986a) Nodulation of Casuarinaceae in relation to host species and soil properties. Aust J Bot 34:435–444

    Google Scholar 

  • Reddell P, Foster RC, Bowen GD (1986b) The effects of sodium chloride on growth and nitrogen fixation in Casuarina obesa Miq. New Phytol 102:397–408

    CAS  Google Scholar 

  • Remans R, Croonenborghs A, Torres Gutierrez R, Michiels J, Vanderleyden J (2007) Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. Eur J Plant Pathol 119:341–351

    CAS  Google Scholar 

  • Remans R, Ramaekers L, Schelkens S, Hernandez G, Garcia A, Reyes J, Mendez N, Toscano V, Mulling M, Galvez L, Vanderleyden J (2008) Effect of Rhizobium-Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37

    CAS  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    PubMed  CAS  Google Scholar 

  • Requena N, Jimenez I, Toro M, Barea JM (1997) Interactions between plant-growth promoting rhizobacteria PGPR, arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semi-arid ecosystems. New Phytol 136:667–677

    Google Scholar 

  • Richards JW, Krumholz GD, Chval MS, Tisa LS (2002) Heavy metal resistance patterns of Frankia strains. Appl Environ Microbiol 68:923–927

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rodelas B, González-López J, Martínez-Toledo MV, Pozo C, Salmerón V (1999) Influence of Rhizobium/Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of faba bean (Vicia faba L.). Biol Fertil Soils 29:165–169

    CAS  Google Scholar 

  • Rodríguez-Llorente ID, Dary M, Gamane D, El Hamdaoui A, Doukkali B, Lafuente A, Delgadillo J, Caviedes MA, Pajuelo E (2010) Cadmium biosorption properties of the metal resistant Ochrobactrum cytisi Azn6.2. Eng Life Sci 10:49–56

    Google Scholar 

  • Rojas NS, Perry DA, Li CY, Ganio LM (2002) Interactions among soil biology, nutrition, and performance of actinorhizal plant species in the H. J. Andrews Experimental Forest of Oregon. Appl Soil Ecol 19:13–26

    Google Scholar 

  • Romdhane SB, Aouani ME, Trabelsi M, de Lajudie P, Mhamdi R (2008) Selection of high nitrogen-fixing rhizobia nodulating chickpea (Cicer arietinum) for semi-arid Tunisia. J Agron Crop Sci 194:413–420

    Google Scholar 

  • Romdhane SB, Trabelsi M, Aouani ME, de Lajudie P, Mhamdi R (2009) The diversity of rhizobia nodulating chickpea (Cicer arietinum) under water deficiency as a source of more efficient inoculants. Soil Biol Biochem 41:2568–2572

    Google Scholar 

  • Roy S, Khasa DP, Greer CV (2007) Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Can J Bot 85:237–251

    CAS  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress: new perspectives for molecular studies. Mycorrhiza 13:309–317

    PubMed  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (1993) Specificity and functional compatibility of VA mycorrhizal endophytes in association with Bradyrhizobium strains in Cicer arietinum. Symbiosis 15:217–226

    Google Scholar 

  • Ruiz-Lozano JM, Collados C, Barea JM, Azcón R (2001) Arbuscular mycorrhizal symbiosis can alleviate drought induced nodule senescence in soybean plants. New Phytol 151:493–502

    CAS  Google Scholar 

  • Sadiki M, Rabih K (2001) Selection of chickpea (Cicer arietinum) for yield and symbiotic nitrogen fixation ability under salt stress. Agronomie 21:659–666

    Google Scholar 

  • Sadowsky MJ (2005) Soil stress factors influencing symbiotic nitrogen fixation. In: Werner D, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology, and the environment. Springer, Dordrecht, pp 113–141

    Google Scholar 

  • Sadowsky MJ, Graham PH (1998) Soil biology of the Rhizobiaceae. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The rhizobiaceae. Kluwer Academic Publishers, Dordrecht, pp 155–172

    Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272

    CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Sande E, Young DR (1992) Effect of sodium chloride on growth and nitrogenase activity in seedlings of Myrica cerifera L. New Phytol 120:345–350

    CAS  Google Scholar 

  • Sanginga N, Danso SKA, Bowen GD (1989) Nodulation and growth-response of Allocasuarina and Casuarina species to phosphorus fertilization. Plant Soil 118:125–132

    Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    PubMed  CAS  Google Scholar 

  • Saravanakumar D, Kavino M, Raguchander T, Subbian P, Samiyappan R (2012) Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant 33:203–209

    Google Scholar 

  • Sayed WF (2011) Improving Casuarina growth and symbiosis with Frankia under different soil environmental conditions-review. Folia Microbiol 56:1–9

    CAS  Google Scholar 

  • Sayed WF, Wheeler CT, Zahran HH, Shoreit AAM (1997) Effect of temperature and soil moisture on the survival and symbiotic effectiveness of Frankia spp. Biol Fertil Soils 25:349–353

    Google Scholar 

  • Sellstedt A, Huss-Danell K (1986) Biomass production and nitrogen utilization by Alnus incana when grown on N2 or NH4 + made available at the same rate. Planta 167:387–394

    Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin/Heidelberg, pp 205–224

    Google Scholar 

  • Sempavalan J, Wheeler CT, Hooker JE (1995) Lack of competition between Frankia and Glomus for infection and colonization of roots of Casuarina equisetifolia (L). New Phytol 130:429–436

    Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159

    PubMed  CAS  Google Scholar 

  • Shamseldin A, Moawad H (2010) Inhibition of nitrogenase enzyme and completely suppression of nodulation in common bean (Phaseolus vulgaris L.) at high levels of available nitrogen. Am-Eur J Agric Environ Sci 7:75–79

    CAS  Google Scholar 

  • Shannon MC (1998) Adaptation of plants to salinity. Adv Agron 60:75–119

    Google Scholar 

  • Sharma A, Johria BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilczek). Soil Biol Biochem 35:887–894

    CAS  Google Scholar 

  • Sharma G, Sharma R, Sharma E (2010) Impact of altitudinal gradients on energetics and efficiencies of N2-fixation in alder-cardamom agroforestry systems of the eastern Himalayas. Ecol Res 25:1–12

    Google Scholar 

  • Sinclair TR, Purcell LC, Vadez V, Serraj R (2001) Selection of soybean (Glycine max) lines for increased tolerance of N2 fixation to drying soil. Agronomie 21:653–657

    Google Scholar 

  • Smith LT, Pocard JA, Bernard T, Le Rudulier D (1988) Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. J Bacteriol 170:3142–3149

    PubMed  CAS  PubMed Central  Google Scholar 

  • Solans M (2007) Discaria trinervis-Frankia symbiosis promotion by saprophytic actinomycetes. J Basic Microbiol 47:243–250

    PubMed  Google Scholar 

  • Solans M, Vobis G, Cassán F, Luna V, Wall LG (2011) Production of phytohormones by root-associated saprophytic actinomycetes isolated from the actinorhizal plant Ochetophila trinervis. World J Microbiol Biotechnol 27:2195–2202

    CAS  Google Scholar 

  • Soussi M, Lluch C, Ocana A (1999) Comparative study of nitrogen fixation and carbon metabolism in two chickpea (Cicer arietinum L.) cultivars under salt stress. J Exp Bot 50:1701–1708

    CAS  Google Scholar 

  • Srivastava A, Singh SS, Mishra AK (2012) Sodium transport and mechanism(s) of sodium tolerance in Frankia strains. J Basic Microbiol 52:1–2

    Google Scholar 

  • Sundström KR, Huss-Danell K (1987) Effects of water stress on nitrogenase activity in Alnus incana. Physiol Plant 70:342–348

    Google Scholar 

  • Tang C, Hinsinger P, Jaillard B, Rengel Z, Drevon JJ (2001) Effect of phosphorous deficiency on the growth, symbiotic N2 fixation and proton release by two bean (Phaseolus vulgaris) genotypes. Agronomie 21:683–689

    Google Scholar 

  • Tang C, Drevon JJ, Jaillard B, Souche G, Hinsinger P (2004) Proton release of two genotypes of bean (Phaseolus vulgaris L.) as affected by N nutrition and P deficiency. Plant Soil 260:59–68

    CAS  Google Scholar 

  • Tani C, Sasakawa H (2003) Salt tolerance of Casuarina equisetifolia and Frankia Ceql strain isolated from the root nodules of C. equisetifolia. Soil Sci Plant Nutr 49:215–222

    Google Scholar 

  • Tani C, Sasakawa H (2006) Proline accumulates in Casuarina equisetifolia seedlings under salt stress. Soil Sci Plant Nutr 52:21–25

    CAS  Google Scholar 

  • Terpolilli JJ, Hood GA, Poole PS (2012) What determines the efficiency of N2-fixing Rhizobium-legume symbioses? Adv Microb Physiol 60:325–389

    PubMed  CAS  Google Scholar 

  • Theodorou C, Reddell P (1991) In vitro synthesis of ectomycorrhizas on Casuarinaceae with range of mycorrhizal fungi. New Phytol 118:279–288

    Google Scholar 

  • Tiffany ML, Williams RG (2005) Nitrogen inhibits nodulation and reversibly suppress nitrogen fixation in nodules of Alnus maritimus. J Am Soc Sci 130:496–499

    Google Scholar 

  • Toro M, Azcón R, Barea JM (1998) The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol 138:265–273

    CAS  Google Scholar 

  • Tripathi M, Munot H, Shouche Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237

    PubMed  CAS  Google Scholar 

  • Trujillo ME, Kroppenstedt RM, Schumann P, Carro L, Martnez-Molina E (2006) Micromonospora coriariae sp nov., isolated from root nodules of Coriaria myrtifolia. Int J Syst Evol Microbiol 56:2381–2385

    PubMed  CAS  Google Scholar 

  • Trujillo ME, Alonso-Vega P, Rodríguez R, Carro L, Cerda E, Alonso P, Martínez-Molina E (2010) The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. ISME J 4:1265–1281

    PubMed  Google Scholar 

  • Uehlein N, Fileschi K, Eckert M, Bienert G, Bertl A, Kaldenhoff R (2007) Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry 68:122–129

    PubMed  CAS  Google Scholar 

  • Uliassi DD, Huss-Danell K, Ruess RW, Doran K (2000) Biomass allocation and nitrogenase activity in Alnus tenuifolia: responses to successional soil type and phosphorus availability. Ecoscience 7:73–79

    Google Scholar 

  • Valdenegro M, Barea JM, Azcón R (2001) Influence of arbuscular-mycorrhizal fungi, Rhizobium meliloti strains and PGPR inoculation on the growth of Medicago arborea used as model legume for re-vegetation and biological reactivation in a semi-arid Mediterranean area. Plant Growth Regul 34:233–240

    CAS  Google Scholar 

  • Valdés M, Pérez NM, Santo PE D l, Mellado JC, Cabrielas JJP, Normand P, Hirsh M (2005) Non-Frankia actinomycetes isolated from surface sterilized roots of Casuarina equisetifolia fix nitrogen. Appl Environ Microbiol 71:460–466

    PubMed  PubMed Central  Google Scholar 

  • Valverde A, Burgos A, Fiscella T, Rivas R, Velazquez E, Rodrìguez-Barrueco C, Cervantes E, Chamber M, Igual JM (2006) Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil 287:43–50

    CAS  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition: plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vasanthakrishna M, Bagyaraj JD, Nirmalnath PJ (1994) Responses of Casuarina equisetifolia to inoculation with Glomus fasciculatum and/or Frankia. For Ecol Manag 68:399–402

    Google Scholar 

  • Visser S, Danielsson RM, Parkinson D (1991) Field performance of Elaeagnus commutata and Shepherdia canadensis (Elaeagnaceae) inoculated with soil containing Frankia and vesicular arbuscular mycorrhizal fungi. Can J Bot 69:1321–1328

    Google Scholar 

  • Vivas A, Azcòn R, Biro B, Barea JM, Ruiz-Lozano JM (2003a) Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Can J Microbiol 49:577–588

    PubMed  CAS  Google Scholar 

  • Vivas A, Biro B, Campos E, Barea JM, Azcòn R (2003b) Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mossae) and Brevibacillus brevis isolated from cadmium polluted soil under increasing cadmium levels. Environ Pollut 126:179–189

    PubMed  CAS  Google Scholar 

  • Vivas A, Barea JM, Biro B, Azcon R (2006a) Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil. J Appl Microbiol 100:587–598

    PubMed  CAS  Google Scholar 

  • Vivas A, Biro B, Nemeth T, Barea JM, Azcòn R (2006b) Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol Biochem 38:2694–2704

    CAS  Google Scholar 

  • Wall LG, Hellsten A, Huss-Danell K (2000) Nitrogen, phosphorous, and the ratio between them affect nodulation in Alnus incana and Trifolium pratense. Symbiosis 29:91–105

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Co-inoculation of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron Hung 55:315–323

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007b) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by green gram plants. Chemosphere 70:36–45

    PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55:33–42

    PubMed  CAS  Google Scholar 

  • Wheeler CT, Hughes LT, Oldroyd J, Pulford ID (2001) Effects of nickel on Frankia and its symbiosis with Alnus glutinosa (L.) Gaertn. Plant Soil 231:81–90

    CAS  Google Scholar 

  • Whitbread-Abrutat PH (1997) The potential of some soil amendments to improve tree growth on metalliferous mine wastes. Plant Soil 192:199–217

    CAS  Google Scholar 

  • Yamanaka T, Li CY, Bormann BT, Okabe H (2003) Tripartite associations in an alder: effects of Frankia and Alpova diplophloeus on the growth, nitrogen fixation and mineral acquisition of Alnus tenuifolia. Plant Soil 254:179–186

    CAS  Google Scholar 

  • Yang Y (1995) The effect of phosphorus on nodule formation and function in the Casuarina-Frankia symbiosis. Plant Soil 118:125–132

    Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    PubMed  CAS  Google Scholar 

  • Young DR, Sande E, Peters G (1992) Spatial relationships of Frankia and Myrica cerifera on a Virginia, USA Barrier Island. Symbiosis 12:209–220

    Google Scholar 

  • Yuan BC, Li ZZ, Liu H, Gao M, Zhang YY (2007) Microbial biomass and activity in salt affected soils under arid conditions. Appl Soil Ecol 35:319–328

    Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shahroona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963

    PubMed  CAS  Google Scholar 

  • Zahran HH (1991) Conditions for successful Rhizobium–legume symbiosis in saline environments. Biol Fertil Soils 12:73–80

    Google Scholar 

  • Zahran HH (1999) Rhizobium–legume symbiosis and nitrogen fixation under severe conditions and in arid climate. Microbiol Mol Biol Rev 12:968–998

    Google Scholar 

  • Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153

    PubMed  CAS  Google Scholar 

  • Zahran HH, Sprent JI (1986) Effects of sodium chloride and polyethylene glycol on root hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta 167:303–309

    PubMed  CAS  Google Scholar 

  • Zahran HH, Rasanen LA, Karsisto M, Lindstrom K (1994) Alteration of lipopolysaccharide and protein profiles in SDS PAGE of rhizobia by osmotic and heat stress. World J Microbiol 10:100–105

    CAS  Google Scholar 

  • Zhang F, Dashti N, Hynes RK, Smith DL (1996) Plant-growth promoting rhizobacteria and soybean (Glycine max [L.] Merr.) nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot 77:453–459

    Google Scholar 

  • Zhang Y, Zhong CL, Chen Y, Chen Z, Jiang QB, Wu C, Pinyopusarerk K (2010) Improving drought tolerance of Casuarina equisetifolia seedlings by arbuscular mycorrhizas under glasshouse conditions. New For 40:261–271

    Google Scholar 

  • Zhong C, Zhang Y, Chen Y, Jiang Q, Chen Z, Liang J, Pinyopusarerk K, Franche C, Bogusz D (2010) Casuarina research and applications in China. Symbiosis 50:107–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahim Bouizgarne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Bouizgarne, B., Oufdou, K., Ouhdouch, Y. (2015). Actinorhizal and Rhizobial-Legume Symbioses for Alleviation of Abiotic Stresses. In: Arora, N. (eds) Plant Microbes Symbiosis: Applied Facets. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2068-8_14

Download citation

Publish with us

Policies and ethics