Skip to main content

Gas Lasers

  • Conference paper
  • First Online:
Laser Physics and Technology

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 160))

  • 2024 Accesses

Abstract

The field of gas lasers, started with the invention of He–Ne laser in 1961, has witnessed tremendous growth in terms of technology development, research into gaseous gain medium, resonator physics and application in widely diverse arenas. This was possible due to high versatility of gas lasers in terms of operating wavelengths, power, beam quality and mode of operation. In recent years, there is a definite trend to replace the gas lasers, wherever possible, by more efficient and compact solid-state lasers. However, for many industrial, medical and military applications, the gas lasers still rule the roost due to their high-power capabilities with good beam quality at specific wavelengths. This chapter presents a short review covering the operating principle, important technical details and application potential of all the important gas lasers such as He–Ne, CO2, argon ion, copper vapour, excimer and chemical lasers. These neutral atoms, ions and molecule gas lasers are discussed as per applicable electrical, chemical and optical excitation schemes. The optically pumped gas lasers, recently experiencing resurgence, are discussed in the context of far infrared THz molecular lasers, diode-pumped alkali lasers and optically pumped gas-filled hollow-core fibre lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Javan, W.R. Bennett, D.R. Herriott, Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture. Phys. Rev. Lett. 6, 106 (1961)

    Article  ADS  Google Scholar 

  2. W.B. Bridges, Laser oscillation in singly ionized argon in the visible spectrum. Appl. Phys. Lett. 4, 128 (1964)

    Google Scholar 

  3. W.T. Walter, M. Piltch, N. Solimene, G. Gould, Pulsed laser action in atomic copper vapor laser. Bull. Am. Phys. Soc. 11, 113 (1966)

    Google Scholar 

  4. J.K. Mittal, P.K. Bhadani, B. Singh, L. Abhinandan, R. Bhatnagar, Design and performance of a 20W copper vapour laser. J. Phys. E 21, 388 (1988)

    Article  ADS  Google Scholar 

  5. S.K. Dixit, B. Singh, S.V. Nakhe, J.K. Mittal, R. Bhatnagar, Negative branch unstable resonator copper vapor laser. Opt. Lett. 15, 428 (1990)

    Article  ADS  Google Scholar 

  6. S.K. Dixit, J.K. Mittal, B. Singh, P. Saxena, R. Bhatnagar, A generalized diffraction filtered resonator with a copper vapor laser. Opt. Commun. 98, 91 (1993)

    Article  ADS  Google Scholar 

  7. S.K. Dixit, B. Singh, J.K. Mittal, R. Choube, R. Bhatnagar, Analysis of the temporal and spatial characteristics of the output from short inversion time self-terminating lasers with various resonators. Opt. Eng. 33, 1908 (1994)

    Article  ADS  Google Scholar 

  8. B. Singh, V.V. Subramaniam, S.R. Daultabad, A. Chakraborty, 100 W kinetically enhanced copper vapor laser at 10 kHz repetition-rate, high (∼1.5 %) efficiency with low (∼1.6 kW/l) specific input power and performance of new resonator configurations. Opt. Commun. 281, 4415 (2008)

    Article  ADS  Google Scholar 

  9. R. Biswal, P.K. Agrawal, G.K. Mishra, S.V. Nakhe, S.K. Dixit, J.K. Mittal, Development of a 16 kHz repetition rate, 110 W average power Copper HyBrID laser. Pramana 75, 953 (2010)

    Google Scholar 

  10. R. Biswal, P.K. Agarwal, S.K. Dixit, S.V. Nakhe, A study on the purification of HBr gas by fractional distillation technique and its effect on improvement of Copper-HBr laser performance. Opt. Eng. 51, 114203 (2012)

    Article  ADS  Google Scholar 

  11. C.K.N. Patel, Continuous-wave laser action on vibrational-rotational transitions of CO2. Phys. Rev. A 136, 1187 (1964)

    Google Scholar 

  12. D.J. Biswas, A.K. Nath, U. Nundy, U.K. Chatterjee, Multiline CO2 lasers and their uses. Prog. Quantum Electron. 14, 1 (1990)

    Article  ADS  Google Scholar 

  13. A.K. Nath, A. Lala, P. Choudhary, M. Kumar, Design and operation characteristics of a high power transverse flow pulser sustained cw CO2 laser. Pramana J. Phys. 38, 379 (1992)

    Article  ADS  Google Scholar 

  14. D.J. Biswas, J.P. Nilaya, M.B.S. Prasad, P. Raote, Switch-less operation of a TEA CO2 laser. Opt. Express 13, 9636 (2005)

    Article  ADS  Google Scholar 

  15. G.C. Patil, P.N. Jonnalagadda, D.J. Biswas, Performance of a self-switched TEA CO2 laser with multi/two/single spark channel preioniser. Opt. Commun. 284, 5177 (2011)

    Article  ADS  Google Scholar 

  16. H. Heard, Ultraviolet gas laser at room temperature. Nature 200, 67 (1963)

    Article  ADS  Google Scholar 

  17. N.G. Basov, V.A. Danilychev, Y.M. Popov, D.D. Khodkevich, The quantum generator in vacuum area of a spectrum at excitation liquid xenon by electronic beam”. JETP Lett. 12, 329 (1970)

    ADS  Google Scholar 

  18. P. Bhatnagar, B. Singh, U. Nundy, Low pressure 50 mJ KrF Laser. Opt. Eng. 33, 1905 (1994)

    Article  ADS  Google Scholar 

  19. N.S. Banerjee, N.K. Varshnay, K.M. Krishnan, D.V. Ghodke, Development of 150 mJ, 150 Hz Xenon Chloride Laser with two stage Magnetic Pulse Compression circuit, National Laser Symposium NLS-09, BARC, Mumbai, January, 13–16, 2010

    Google Scholar 

  20. R.S. Sendhil, P.K. Gupta, Laser based instruments for the nuclear fuel cycle. RRCAT Newsl. 20, 25 (2007)

    Google Scholar 

  21. J.C. Polanyi, Proposal for an infrared maser dependent on vibrational excitation. J. Chem. Phys. 34, 347 (1961)

    Article  ADS  Google Scholar 

  22. J.V.V. Kasper, G.C. Pimentel, HCl chemical laser. Phys. Rev. Lett. 14, 352 (1965)

    Google Scholar 

  23. R.G. Derwent, D.R. Kearns, B.A. Thrush, The excitation of iodine by singlet molecular oxygen. Chem. Phys. Lett. 6, 115 (1970)

    Article  ADS  Google Scholar 

  24. W.E. McDermott, D. Pchelkin, D.J. Benard, R.R. Bouske, An electronic transition chemical laser. Appl. Phys. Lett. 32, 469 (1978)

    Article  ADS  Google Scholar 

  25. J.V.V. Kasper, G.C. Pimentel, Atomic iodine photo dissociation laser. Appl. Phys. Lett. 5, 231 (1964)

    Article  ADS  Google Scholar 

  26. T.Y. Chang, T.J. Bridges, Laser action at 482, 496, and 541 μm in optically pumped CH3F. Opt. Commun. 1, 423 (1970)

    Article  ADS  Google Scholar 

  27. P.K. Gupta, V.P. Singhal, N.S. Shikarkhane, S. Sasikumar, U. Nundy, U.K. Chatterjee, Design and operational characteristics of a 16 μm CF4 laser. Pramana J. Phys. 34, 249 (1990)

    Article  ADS  Google Scholar 

  28. W.F. Krupke, R.J. Beach, V.K. Kanz, S.A. Payne, Resonance transition 795 nm rubidium laser. Opt. Lett. 28, 2336 (2003)

    Article  ADS  Google Scholar 

  29. J. Zweiback, A. Komashko, W.F. Krupke, Alkali vapour lasers. Proc. SPIE 7581(75810G) (2010)

    Google Scholar 

  30. A.M. Jones, A.V.V. Nampoothiri, A. Ratanavis, T. Fiedler, N.V. Wheeler, F. Couny, R. Kadel, F. Benabid, B.R. Washburn, K.L. Corwin, W. Rudolph, Mid-infrared gas filled photonic crystal fiber laser based on population inversion. Opt. Express 19, 2309 (2011)

    Article  ADS  Google Scholar 

  31. A.V.V. Nampoothiri, A.M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y.Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B.R. Washburn, K.L. Corwin, W. Rudolph, Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review. Opt. Mat. Express 2, 948 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Dixit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Dixit, S.K. (2015). Gas Lasers. In: Gupta, P., Khare, R. (eds) Laser Physics and Technology. Springer Proceedings in Physics, vol 160. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2000-8_3

Download citation

Publish with us

Policies and ethics