Skip to main content

A Classification of Curtis-Tits Amalgams

  • Conference paper
  • First Online:
Groups of Exceptional Type, Coxeter Groups and Related Geometries

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 82))

  • 929 Accesses

Abstract

A celebrated theorem of Curtis and Tits on groups with finite BN-pair shows that these groups are determined by the local structure arising from their fundamental subgroups of ranks \(1\) and \(2\). This result was later extended to Kac-Moody groups by P. Abramenko and B. Mühlherr and Caprace. Their theorem states that a Kac-Moody group \(G\) is the universal completion of an amalgam of rank two (Levi) subgroups, as they are arranged inside \(G\) itself. Taking this result as a starting point, we define a Curtis-Tits structure over a given diagram to be an amalgam of groups such that the sub-amalgam corresponding to a two-vertex sub-diagram is the Curtis-Tits amalgam of some rank-\(2\) group of Lie type. There is no a priori reference to an ambient group, nor to the existence of an associated (twin-) building. Indeed, there is no a priori guarantee that the amalgam will not collapse. We then classify these amalgams up to isomorphism. In the present paper we consider triangle-free simply-laced diagrams. Instead of using Goldschmidt’s lemma, we introduce a new approach by applying Bass and Serre’s theory of graphs of groups, not to the amalgams themselves but to a graph of groups consisting of certain automorphism groups. The classification reveals a natural division into two main types: “orientable” and “non-orientable” Curtis-Tits structures. Our classification of orientable Curtis-Tits structures naturally fits with the classification of all locally split Kac-Moody groups over fields with at least four elements using Moufang foundations. In particular, our classification yields a simple criterion for recognizing when Curtis-Tits structures give rise to Kac-Moody groups. The class of non-orientable Curtis-Tits structures is in some sense much larger. Many of these amalgams turn out to have non-trivial interesting completions inviting further study.

Subject Classification: [2010] Primary 20G35; Secondary 51E24, 20E42The authors wish to thank the Banff International Research Station, Banff, Canada for a very productive visit as part of their Research In Teams program (08rit130).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramenko, P., Mühlherr, B.: Présentations de certaines \(BN\)-paires jumelées comme sommes amalgamées. C. R. Acad. Sci. Paris Sér. I Math. 325(7), 701–706 (1997)

    Google Scholar 

  2. Bass, H.: Covering theory for graphs of groups. J. Pure Appl. Algebra 89(1–2), 3–47 (1993)

    Google Scholar 

  3. Blok, R.J., Gagola III, M.S.: Coxeter-chein loops, Commun Algebra (2013)

    Google Scholar 

  4. Blok, R.J., Hoffman, C.: A Curtis-Tits-Phan theorem for the twin-building of type \(\widetilde{A}_{n-1}\). J. Algebra 321(4), 1196–1224 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blok R.J., Hoffman C.: Curtis-Tits groups generalizing Kac-Moody groups of type \(\widetilde{A}_n\). Submitted, Jan 2013

    Google Scholar 

  6. Blok, R.J., Hoffman, C.: Bass-Serre theory and counting rank two amalgams. J. Group Theor. 14(3), 389–400 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blok R.J., Hoffman C.G.: \(1\)-cohomology of simplicial amalgams of groups. J. Alg. Comb. (2012). doi:10.1007/s10801-012-0374-0

  8. Blok, R.J., Hoffman, C.G., Vdovina, A.: Expander graphs from Curtis-Tits groups. J. Combin. Theor. Ser. A 119(3), 521–525 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bridson M.R., Haefliger A.: Metric spaces of non-positive curvature, In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. vol. 319, Springer-Verlag, Berlin (1999)

    Google Scholar 

  10. Burger M., Mozes S.: Lattices in product of trees. Inst. Hautes Études Sci. Publ. Math. 92(2000), 151–194 (2001)

    Google Scholar 

  11. Burger M., Mozes S.: Groups acting on trees: from local to global structure. Inst. Hautes Études Sci. Publ. Math. 92(2000), 113–150 (2001)

    Google Scholar 

  12. Caprace, P.-E.: On 2-spherical Kac-Moody groups and their central extensions. Forum Math. 19(5), 763–781 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Caprace, P.-E., Rémy, B.: Simplicity and superrigidity of twin building lattices. Invent. Math. 176(1), 169–221 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Curtis, C.W.: Central extensions of groups of Lie type. J. Reine Angew. Math. 220, 174–185 (1965)

    MATH  MathSciNet  Google Scholar 

  15. Dunlap J.: Uniqueness of Curtis-Tits amalgams. Ph.D. thesis, Bowling Green State University (2005)

    Google Scholar 

  16. Hée, J.-I.: Systèmes de racines sur un anneau commutatif totalement ordonné. Geometriae Dedicata 37(1), 65–102 (1991)

    Google Scholar 

  17. Mühlherr, B.: Locally split and locally finite twin buildings of \(2\)-spherical type. J. Reine Angew. Math. 511, 119–143 (1999)

    MATH  MathSciNet  Google Scholar 

  18. Mühlherr, B., Ronan, M.: Local to global structure in twin buildings. Invent. Math. 122, 71–81 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ramagge, J.: On certain fixed point subgroups of affine Kac-Moody groups. J. Algebra 171(2), 473–514 (1995)

    Google Scholar 

  20. Schreier, O., Van der Waerden, B.: Die automorphismen der projektiven gruppen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 6(1), 303–322 (1928)

    Google Scholar 

  21. J.-P. Serre.: Trees. Springer-Verlag, Berlin, (1980) Translated from the French by John Stillwell

    Google Scholar 

  22. Timmesfeld, F.G.: Presentations for certain Chevalley groups. Geom. Dedicata 73(1), 85–117 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Timmesfeld, F.G.: On the Steinberg-presentation for Lie-type groups. Forum Math. 15(5), 645–663 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Timmesfeld, F.G.: The Curtis-Tits-presentation. Adv. Math. 189(1), 38–67 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Timmesfeld, F.G.: Steinberg-type presentation for Lie-type groups. J. Algebra 300(2), 806–819 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tits, J.: Buildings of Spherical Type and Finite BN-Pairs. Springer-Verlag, Berlin (1974)

    MATH  Google Scholar 

  27. Tits, J.: Uniqueness and presentation of Kac-Moody groups over fields. J. Algebra 105(2), 806–819 (2006)

    Google Scholar 

  28. Tits J.: Twin Buildings and Groups of Kac-Moody Type. In: Groups, combinatorics and geometry, Durham, 1990. London Mathematical Society Lecture Note, vol. 165, pp. 249–286. Cambridge University Press, Cambridge (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corneliu G. Hoffman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Blok, R.J., Hoffman, C.G. (2014). A Classification of Curtis-Tits Amalgams. In: Sastry, N. (eds) Groups of Exceptional Type, Coxeter Groups and Related Geometries. Springer Proceedings in Mathematics & Statistics, vol 82. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1814-2_1

Download citation

Publish with us

Policies and ethics