Skip to main content

Animal Forensics and Applications

  • Chapter
  • First Online:
Biotechnology: Prospects and Applications

Abstract

Forensic science is the application of a broad spectrum of sciences and technologies to investigate situations after getting the facts and to establish what occurred based on collected evidence. This is especially important in law enforcement where forensics is done in relation to criminal or civil law. In civil actions, forensics can help resolve a broad spectrum of legal issues through the identification, analysis, and evaluation of physical evidence. The field of forensic science covers document examination, DNA analysis using electronic or digital media, fingerprinting, autopsy techniques, forensic engineering, forensic anthropology, pathology, economics, accounting, biology, entomology, toxicology, and much more. In this chapter we have described different materials such as hair, blood, bone, teeth, saliva, nails, feathers, skin, leather, sperm, feces, and urine and different methods for extracting DNA from different sources. The applications of animal forensics can be broadly viewed in the following four categories such as animals can be the victim, can be the perpetrator, and can be the witness and wildlife forensics. Molecular animal forensics provides different genetic tools such as DNA sequencing, single nucleotide polymorphism (SNP), PCR-RFLP, and microsatellite analysis for species identification and for characterization or identification of a sample recovered from a crime scene or illegal wildlife traders and black markets involved in wildlife trade. The genetic identification can be done as species identification, identification of geographic origin, individual identification, etc. Mitochondrial and nuclear markers can be used for genetic identification of the species. Identification of geographic origin is done by phylogeography and population assignment methods. To summarize, various techniques of individual identification, sexing, and parentage can be used. These techniques involve the microsatellite genotyping, DNA nucleotide sequencing, SNP typing, RAPD, and AFLP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arun K, Rajiv RK, Brahma DS, Sanjod KM, Deepak S, Palanisamy G (2012) Species specific polymerase chain reaction (PCR) assay for identification of pig (Sus domesticus) meat. Afr J Biotechnol 11:15590–15595

    Google Scholar 

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New York

    Book  Google Scholar 

  • Avise JC, Arnold J, Martin Ball R, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522

    Google Scholar 

  • Baker LE, McCormick WF, Matteson KJ (2001) A silica-based mitochondrial DNA extraction method applied to forensic hair shafts and teeth. J Forensic Sci 46:126–130

    CAS  PubMed  Google Scholar 

  • Branicki W, Kupiec T, Pawlowski R (2003) Validation of cytochrome b sequence analysis as a method of species identification. J Forensic Sci 48:83–87

    CAS  PubMed  Google Scholar 

  • Brower AVZ, DeSalle R, Vogler A (1996) Gene trees, species trees, and systematics: a cladistic perspective. Annu Rev Ecol Syst 27:423–450

    Article  Google Scholar 

  • Budowle B, Allard MW, Wilson MR, Chakraborty R (2003) Forensics and mitochondrial DNA: applications, debates, and foundations. Annu Rev Genomics Hum Genet 4:119–141

    Article  CAS  PubMed  Google Scholar 

  • Butler JM, Levin BC (1998) Forensic applications of mitochondrial DNA. Trends Biotechnol 16:158–162

    Article  CAS  PubMed  Google Scholar 

  • Butler JM, Shen Y, McCord BR (2003) The development of reduced size STR amplicons as tools for analysis of degraded DNA. J Forensic Sci 48:1054–1064

    CAS  PubMed  Google Scholar 

  • Chaisomchit S, Wichajarn R, Chowpreecha S, Chareon-siriwatana W (2003) A simple method for extraction and purification of genomic DNA from dried blood spots on filter paper. Southeast Asian J Trop Med Public Health 34:641–645

    CAS  PubMed  Google Scholar 

  • Chapman DD, Abercrombie DL, Douady CJ, Pikitch EK, Stanhope MJ, Shivji MS (2003) A streamlined, bi-organelle, multiplex PCR approach to species identification: application to global conservation and trade monitoring of the great white shark, Carcharodon carcharias. Conserv Genet 4:415–425

    Article  CAS  Google Scholar 

  • Clarke SC, Magnussen JE, Abercrombie DL, McAllister MK, Shivji MS (2006) Identification of shark species composition and proportion in the Hong Kong shark fin market based on molecular genetics and trade records. Conserv Biol 20:201–211

    Article  PubMed  Google Scholar 

  • Cline RE, Laurent NM, Foran DR (2003) The fingernails of Mary Sullivan: developing reliable methods for selectively isolating endogenous and exogenous DNA from evidence. J Forensic Sci 48:1–6

    Google Scholar 

  • Courchamp F, Angulo E, Rivalan P, Hall RJ, Signoret L, Bull L, Meinard Y (2006) Rarity value and species extinction: the anthropogenic allee effect. PLoS Biol 4:2405–2410

    Article  CAS  Google Scholar 

  • Deguilloux MF, Pemonge MH, Petit RJ (2002) Novel perspectives in wood certification and forensics: dry wood as a source of chloroplast, mitochondrial and nuclear DNA. Proc R Soc Lond B Biol Sci 269:1039–1046

    Article  CAS  Google Scholar 

  • Fontanesi L, Davoli R, Nanni Costa L, Beretti F, Scotti E, Tazzoli M, Tassone F, Colombo M, Buttazzoni L, Russo V (2008) Investigation of candidate genes for glycolytic potential of porcine skeletal muscle: association with meat quality and production traits in Italian Large White pigs. Meat Sci 80:780–787

    Article  CAS  PubMed  Google Scholar 

  • Gerber AS, Loggins R, Kumar S, Dowling TE (2001) Does nonneutral evolution shape observed patterns of DNA variation in animal mitochondrial genomes? Annu Rev Genet 35:539–566

    Article  CAS  PubMed  Google Scholar 

  • Gill P, Jeffreys AJ, Werret DJ (1985) Forensic applications of DNA fingerprints. Nature 318:577–579

    Article  CAS  PubMed  Google Scholar 

  • Giovambattista G, Ripoli MV, Liron JP, Villegas Castagnasso EE, Peral-Garcia P, Lojo MM (2001) DNA typing in a cattle stealing case. J Forensic Sci 46:1484–1486

    CAS  PubMed  Google Scholar 

  • Gowans S, Dalebout ML, Hooker SK, Whitehead H (2000) Reliability of photographic and molecular techniques for sexing bottlenose whales, Hyperoodon ampullatus. Can J Zool 78:1224–1229

    Article  Google Scholar 

  • Greenberg BD, Newbold JE, Sugino A (1983) Intraspecific nucleotide sequence variability surrounding the origin of replication in human mitochondrial DNA. Gene 21:33–49

    Article  CAS  PubMed  Google Scholar 

  • Griffiths R, Double MC, Orr K, Dawson RJG (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK, Verma SK, Singh L (2005) Molecular insight into a wildlife crime: the case of a peafowl slaughter. Forensic Sci Int 154:214–217

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK, Thangaraj K, Singh L (2006) A simple and inexpensive molecular method for sexing and identification of the forensic samples of elephant origin. J For Sci 51:805–807

    CAS  Google Scholar 

  • Hajibabaei M, Smith MA, Janzen DH, Rodriguez JJ, Whitfield JB, Hebert PDN (2006) A minimalist barcode can identify a specimen whose DNA is degraded. Mol Ecol Notes 6:959–964

    Article  CAS  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321

    Article  CAS  Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B Biol Sci 270:96–99

    Article  Google Scholar 

  • Higuchi RG, von Beroldigen CH, Sensabaugh GF, Ehrlich HA (1988) DNA typing from single hairs. Nature 332:543–545

    Article  CAS  PubMed  Google Scholar 

  • Hoss M, Paabo S (1993) DNA extraction from Pleistocene bones by a silica- based purification method. Nucleic Acids Res 21:3913–3914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsieh HM, Huang LH, Tsai LC, Kuo YC, Meng HH, Linacre A et al (2003) Species identification of rhinoceros horns using the cytochrome b gene. Forensic Sci Int 136:1–11

    Article  CAS  PubMed  Google Scholar 

  • Johnson WE, O’Brien SJ (1997) Phylogenetic reconstruction of the Felidae using 16S rRNA and NADH–5 mitochondrial genes. J Mol Evol 44:S98–S116

    Article  CAS  PubMed  Google Scholar 

  • Keller RP, Lodge DM (2007) Species invasions from commerce in live aquatic organisms: problems and possible solutions. Bioscience 57:428–436

    Article  Google Scholar 

  • Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, Carey C, Livo L, Pessier AP, Collins JP (2006) Emerging infectious disease and the loss of biodiversity in a neotropical amphibian community. Proc Natl Acad Sci U S A 103:3165–3170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loreille OM, Diegoli TM, Irwin JA, Coble MD, Parsons TJ (2007) High efficiency DNA extraction from bone by total demineralization. Forensic Sci Int Genet 1:191–195

    Article  PubMed  Google Scholar 

  • Maddison WP (1997) Gene trees in species trees. Syst Biol 46:523–536

    Article  Google Scholar 

  • Magnussen JE, Pikitch EK, Clarke SC, Nicholson C, Hoelzel AR, Shivji MS (2007) Genetic tracking of basking shark products in international trade. Anim Conserv 10:199–207

    Article  Google Scholar 

  • Malisa A, Paul G, Sakurani B, Sam W, Benezeth M (2005) Species and gender differentiation between and among domestic and wild animals using mitochondrial and sex-linked DNA markers. Afr J Biotechnol 4:1269–1274

    CAS  Google Scholar 

  • Mei JV, Alexander JR, Adam BW, Hannon WH (2001) Use of filter paper for the collection and analysis of human whole blood specimens. J Nutr 131:1631S–1636S

    CAS  PubMed  Google Scholar 

  • Moore MK, Bemiss JA, Rice SM, Quattro JM, Woodley CM (2003) Use of restriction fragment length polymorphisms to identify sea turtle eggs and cooked meats to species. Conserv Genet 4:95–103

    Article  Google Scholar 

  • Nguyen TH, Nguyen DHC, Phan TP, Nguyen THL, Nguyen DTG (2012) Extraction of human genomic DNA from dried blood spots and hair roots. Int J Biosci Biochem Bioinform 2:21–26

    Google Scholar 

  • Normile D (2004) Invasive species—expanding trade with China creates ecological backlash. Science 306:968–969

    Article  CAS  PubMed  Google Scholar 

  • Ojeda GN, Amavet PS, Rueda EC, Siroski PA (2012) DNA extraction from skins of wild (Hydrochoerus hydrochaeris and Pecari tajacu) and domestic (Sus scrofa domestica) species using a novel protocol. Genet Mol Res 11:672–678

    Article  CAS  PubMed  Google Scholar 

  • Page RDM (2000) Extracting species trees from complex gene trees: reconciled trees and vertebrate phylogeny. Mol Phylogenet Evol 14:89–106

    Article  CAS  PubMed  Google Scholar 

  • Pank M, Stanhope M, Natanson L, Kohler N, Shivji M (2001) Rapid and simultaneous identification of body parts from the morphologically similar sharks Carcharhinus obscurus and Carcharhinus plumbeus (Carcharhinidae) using multiplex PCR. Marine Biotechnol 3:231–240

    Article  CAS  Google Scholar 

  • Parson W, Pegoraro K, Niederstatter H, Foger M, Steinlechner M (2000) Species identification by means of the cytochrome b gene. Int J Legal Med 114:23–28

    Article  CAS  PubMed  Google Scholar 

  • Pedersen AB, Jones KE, Nunn CL, Altizer S (2007) Infectious diseases and extinction risk in wild mammals. Conserv Biol 21:1269–1279

    Article  PubMed  Google Scholar 

  • Peppin L, McEwing R, Carvalho GR, Ogden R (2008) A DNA based approach for the forensic identification of Asiatic black bear (Ursus thibetanus) in a traditional Asian medicine. J Forensic Sci 53:1358–1362

    CAS  PubMed  Google Scholar 

  • Pfeiffer H, Huhne J, Ortmann C, Waterkamp K, Brinkmann B (1999) Mitochondrial DNA typing from human axillary, pubic and head hair shafts—success rates and sequence comparisons. Int J Leg Med 112:287–290

    Article  CAS  Google Scholar 

  • Reed RN (2005) An ecological risk assessment of non-native boas and pythons as potentially invasive species in the United States. Risk Anal 25:753–766

    Article  PubMed  Google Scholar 

  • Roman J, Bowen BW (2000) The mock turtle syndrome: genetic identification of turtle meat purchased in the south-eastern United States of America. Anim Conserv 3:61–65

    Article  Google Scholar 

  • Samaraweera M, Himali SMC, Zeng SC, Jianlin H, Silva P (2011) Development of molecular tools to differentiate Sri Lankan wild boar (Sus scrofa affinis) meat from exotic and village pig (Sus scrofa domestica) meat. Trop Agric Res 23:11–20

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shivji M, Clarke S, Pank M, Natanson L, Kohler N, Stanhope M (2002) Genetic identification of pelagic shark body parts for conservation and trade monitoring. Conserv Biol 16:1036–1047

    Article  Google Scholar 

  • Shivji MS, Chapman DD, Pikitch EK, Raymond PW (2005) Genetic profiling reveals illegal international trade in fins of the great white shark, Carcharodon carcharias. Conserv Genet 6:1035–1039

    Article  Google Scholar 

  • Sites JW, Davis SK, Guerra T, Iverson JB, Snell HL (1996) Character congruence and phylogenetic signal in molecular and morphological data sets: a case study in the living iguanas (Squamata, Iguanidae). Mol Biol Evol 13:1087–1105

    Article  CAS  PubMed  Google Scholar 

  • Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Hines HB, Kenyon N (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. Ecohealth 4:125–134

    Article  Google Scholar 

  • Smith KF, Sax DF, Lafferty KD (2006) Evidence for the role of infectious disease in species extinction and endangerment. Conserv Biol 20:1349–1357

    Article  PubMed  Google Scholar 

  • Spinks PQ, Shaffer HB (2007) Conservation phylogenetics of the Asian box turtles (Geoemydidae, Cuora): mitochondrial introgression, numts, and inferences from multiple nuclear loci. Conserv Genet 8:641–657

    Article  Google Scholar 

  • Suenaga E, Nakamura H (2005) Evaluation of three methods for effective extraction of DNA from human hair. J Chromatogr B 820:137–141

    Article  CAS  Google Scholar 

  • Sullivan KM, Hopgood R, Gill P (1992) Identification of human remains by amplification and automated sequencing of mitochondrial DNA. Int J Legal Med 105:83–86

    Google Scholar 

  • Turan C (2008) Molecular systematic analyses of Mediter-ranean skates (Rajiformes). Turk J Zool 32:1–6

    Google Scholar 

  • Upholt WB (1977) Estimation of DNA-sequence divergence from comparison of restriction endonuclease digests. Nucleic Acids Res 4:1257–1265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verma SK, Singh L (2003) Novel universal primers establish identity of an enormous number of animal species for forensic application. Mol Ecol Notes 3:28–31

    Article  CAS  Google Scholar 

  • Verma SK, Prasad K, Nagesh N, Sultana M, Singh L (2003) Was elusive carnivore a panther? DNA typing of faeces reveals the mystery. Forensic Sci Int 137:16–20

    Article  CAS  PubMed  Google Scholar 

  • Vigilant L (1999) An evaluation of techniques for the extraction and amplification of DNA from naturally shed hairs. Biol Chem 380:1329–1331

    CAS  PubMed  Google Scholar 

  • Volo SBD, Reynolds RT, Douglas MR, Antolin MF (2008) An improved extraction method to increase DNA yield from molted feathers. Condor 110:762–767

    Article  Google Scholar 

  • Walsh DJ, Corey AC, Cotton RW, Forman L, Herrin GL Jr, Word CJ, Garner DD (1992) Isolation of deoxyribonucleic acid (DNA) from saliva and forensic science samples containing saliva. J Forensic Sci 37:387–395

    CAS  PubMed  Google Scholar 

  • Weigle SM, Smith LD, Carlton JT, Pederson J (2005) Assessing the risk of introducing exotic species via the live marine species trade. Conserv Biol 19:213–223

    Article  Google Scholar 

  • Wetton JH, Tsang CFS, Roney CA, Spriggs AC (2004) An extremely sensitive species-specific ARMs PCR test for the presence of tiger bone DNA. Forensic Sci Int 140:139–145

    Article  PubMed  Google Scholar 

  • Wilson MR, Polanskey D, Butler J, DiZinno JA, Replogle J, Budowle B (1995) Extraction, PCR amplification and sequencing of mitochondrial DNA from human hair shafts. BioTechniques 18:662–669

    CAS  PubMed  Google Scholar 

  • Yoshii T, Tamura K, Ishiyama I (1992) Presence of a PCR inhibitor in hairs (Japanese). Nippon Hoigaku Zasshi 46:313–316

    CAS  PubMed  Google Scholar 

  • Yoshii T, Tamura K, Taniguchi T, Akiyama K, Ishiyama I (1993) Water soluble eumelanin as a PCR inhibitor and a simple methods for its removal (Japanese). Nippon Hoigaku Zasshi 47:323–329

    CAS  PubMed  Google Scholar 

  • Zhang F, Jiang Z (2006) Mitochondrial phylogeography and genetic diversity of Tibetan gazelle (Procapra picticaudata): implications for conservation. Mol Phylogenet Evol 41:313–321

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Minakshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Minakshi, P. et al. (2013). Animal Forensics and Applications. In: Salar, R., Gahlawat, S., Siwach, P., Duhan, J. (eds) Biotechnology: Prospects and Applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1683-4_20

Download citation

Publish with us

Policies and ethics