Skip to main content

Emerging Dynamics of Brassinosteroids Research

  • Chapter
  • First Online:
Biotechnology: Prospects and Applications

Abstract

Brassinosteroids are a class of naturally occurring steroidal compounds that play vital role in plant growth and development. Extensive research on BRs biosynthesis, distribution, signal perception, and transduction has broadened our understanding about this important phytohormone. The mode of action of brassinosteroids involves the perception of its signal by the cell surface receptor and the subsequent activation of downstream transcription factors and genes. Development of modern tools, availability of biological resources, and use of genetic, biochemical, and proteomic approaches have greatly advanced our understanding on the key regulatory elements in the BRs signaling networks. At present, brassinosteroids are implicated in various important functions in plants such as growth and development as well as stress amelioration. However, further advancement of knowledge in the area will enable scientists to precisely answer some key fundamental questions related to its versatile roles in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht C, Boutrot F, Segonzac C, Schwessinger B, Gimenez-Ibanez S, Chinchilla D, Rathjen JP, de Vries SC, Zipfel C (2012) Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc Natl Acad Sci U S A 109:303–308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Azpiroz R, Wu Y, LoCascio JC, Feldmann KA (1998) An Arabidopsis brassinosteroid- dependent mutant is blocked in cell elongation. Plant Cell 10:219–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    CAS  PubMed  Google Scholar 

  • Belkhadir Y, Jaillais Y, Epple P, Balsemao–Pires E, Dangl JL, Chory J (2011) Brassinosteroids modulate the efficiency of plant immune responses to microbe- associated molecular patterns. Proc Natl Acad Sci U S A 109:297–302

    Article  PubMed Central  PubMed  Google Scholar 

  • Bell EM, Lina W, Husbandsa AY, Yua L, Jaganathaa V, Jablonskaa B, Mangeona A, Neffb MM, Girkea T, Springera PS (2012) Arabidopsis lateral organ boundaries negatively regulates brassinosteroid accumulation to limit growth in organ boundaries. Proc Natl Acad Sci U S A 109:21146–21151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bishop GJ, Harrison K, Jones JDG (1996) The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome p450 family. Plant Cell 8:959–969

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cano-Delgado A, Yin Y, Vafeados D, Mora-Garcia S, Cheng J-C, Nam KH, Li J, Chory J (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341–5351

    Article  CAS  PubMed  Google Scholar 

  • Che P, Bussell JD, Zhou W, Estavillo GM, Pogson BJ, Smith SM (2010) Signaling from the endoplasmic reticulum activates brassinosteroid signaling and promotes acclimation to stress in Arabidopsis. Sci Signal 3:ra69

    Article  PubMed  CAS  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, Jones JD, Felix G, Boller T (2007) A Flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defense. Nature 448:497–500

    Article  CAS  PubMed  Google Scholar 

  • Choudhary SP, Oral HV, Bhardwaj R, Yu J, Tran LP (2012) Interaction of brassinosteroids and polyamine enhances copper stress tolerance in Raphanus sativus. J Exp Bot 63:5659–5675

    Article  CAS  PubMed  Google Scholar 

  • Chung Y, Maharjan PM, Lee O, Fujioka S, Jang S, Kim B, Takatsuto S, Tsujimoto M, Kim H, Cho S, Park T, Cho H, Hwang I, Choe S (2011) Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. Plant J 66:564–578

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23:1219–1230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    CAS  PubMed  Google Scholar 

  • Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111:671–678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cui F, Liu L, Zhao Q, Zhang Z, Li Q, Lin B, Wu Y, Tang S, Xie Q (2012) Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid- mediated salt stress tolerance. Plant Cell. doi:http://dx.doi.org/10.1105/tpc.111.093062

  • Davies PJ (1995) The plant hormones: their nature, occurrence and functions. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, pp 1–15

    Chapter  Google Scholar 

  • Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ (2007) Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134:2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Fridman Y, Savaldi-Goldstein S (2013) Brassinosteroids in growth control: how, when and where. Plant Sci 209:24–31

    Article  CAS  PubMed  Google Scholar 

  • Friedrichsen DM, Joazeiro CA, Li J, Hunter T, Chory J (2000) Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine rich repeat receptor serine/threonine kinase. Plant Physiol 123:1247–1256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujioka S, Sakurai A (1997) Biosynthesis and metabolism of brassinosteroids. Physiol Plant 100:710–715

    Article  CAS  Google Scholar 

  • Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54:137–164

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Wang X, Wang D, Xu F, Ding X, Zhang Z, Bi D, Cheng YT, Chen S, Li X, Zhang Y (2009) Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host Microbe 6:34–44

    Article  CAS  PubMed  Google Scholar 

  • Gendron GM, Liua J, Fana M, Baia M, Wenkela S, Springerb PS, Bartona MK, Wanga Z (2012) Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis. Proc Natl Acad Sci U S A 109:21152–21157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130:1319–1334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Garcia MP, Vilarrasa-Blasi J, Zhiponova M, Divol F, Mora-Garcia S, Russinova E, Cano-Delgado AI (2011) Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138:849–859

    Article  CAS  PubMed  Google Scholar 

  • Gudesblat GE, Russinova E (2011) Plants grow on brassinosteroids. Curr Opin Plant Biol 14:530–537

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Fujioka S, Blancaflor EB, Miao S, Gou X, Li J (2010) TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell 22:1161–1173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hao J, Yin Y, Fei S (2013) Brassinosteroid signaling network: implications on yield and stress tolerance. Plant Cell Rep 32:1017–1030

    Article  CAS  PubMed  Google Scholar 

  • Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environ Pollut 151:60–66

    Article  CAS  PubMed  Google Scholar 

  • He Z, Wang ZY, Li J, Zhu Q, Lamb C, Ronald P, Chory J (2000) Perception of brassinosteroids by the receptor kinase BRI1. Nature 474:467–471

    Google Scholar 

  • He JX, Gendron JM, Yang Y, Li J, Wang ZY (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci U S A 99:10185–10190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He JX, Gendron JM, Sun Y, Gampala SS, Gendron N et al (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307:1634–1638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heese A, Hann DR, Gimenez-Ibanez S, Jones AM, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Sci Signal 104:12217

    CAS  Google Scholar 

  • Hofiusa D, Dimitrios I, Tsitsigiannis T, Jonathan DG, Mundy JJ (2007) Inducible cell death in plant immunity. Semin Cancer Biol 17:166–187

    Article  CAS  Google Scholar 

  • Hothorn M, Belkhadir Y, Dreux M, Dabi T, Noel JP, Wilson IA, Chory J (2011) Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature 474:467–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Irani NG, Rubbo SD, Mylle E, Begin JV, Schneider-Pizon J, Hnilikova J, Sisa M, Buyst D, Vilarrasa-Blasi J, Szatmári A, Damme DV, Mishev K et al (2012) Fluorescent castasterone reveals BRI1 signaling from the plasma membrane. Nat Chem Biol 8:583–589

    Article  CAS  PubMed  Google Scholar 

  • Jaillais Y, Hothorn M, Belkhadir Y, Dabi T, Nimchuk ZL, Meyerowitz EM, Chory J (2011) Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes Dev 25:232–237

    Article  CAS  PubMed  Google Scholar 

  • Janssens V, Longin S, Goris J (2008) PP2A holoenzyme assembly: in Cauda venenum (the sting is in the tail). Trends Biochem Sci 33:113–121

    Article  CAS  PubMed  Google Scholar 

  • Je BI, Piao HL, Park SJ, Park SH, Kim CM, Xuan YH, Huang J, Do Choi Y, An G, Wong HL, Fujioka S, Kim MC, Shimamoto K, Han CD (2010) RAV-Like1 maintains brassinosteroid homeostasis via the coordinated activation of BRI1 and biosynthetic genes in rice. Plant Cell 22:1777–1791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    Article  CAS  PubMed  Google Scholar 

  • Kauschmann A, Jessop A, Koncz C, Szekeres M, Willmitzer L, Altmann T (1996) Genetic evidence for an essential role of brassinosteroids in plant development. Plant J 9:701–713

    Article  CAS  Google Scholar 

  • Kerr I, Carrier D, Twycross J (2011) Hormone transport. In: Murphy AS, Schulz B, Peer W (eds) The plant plasma membrane. Springer, Berlin, pp 379–397

    Chapter  Google Scholar 

  • Kim T, Wang Z (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61:681–704

    Article  CAS  PubMed  Google Scholar 

  • Kim TW, Guan S, Sun Y, Deng Z, Tang W, Shang JX, Sun Y, Burlingame AL, Wang ZY (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11:1254–1260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim TW, Guan S, Burlingame AS, Wang ZY (2011) The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Mol Cell 43:561–571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kinoshita T, Cano-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, Chory J (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433:167–171

    Article  CAS  PubMed  Google Scholar 

  • Li J (2010) Multi-tasking of somatic embryogenesis receptor-like protein kinases. Curr Opin Plant Biol 13:509–514

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    Article  CAS  PubMed  Google Scholar 

  • Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light- dependent development of Arabidopsis. Science 272:398–401

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222

    Article  CAS  PubMed  Google Scholar 

  • Maharajan PM, Choe S (2011) High temperature stimulates DWARF4 (DWF4) expression to increase hypocotyl elongation in Arabidopsis. J Plant Biol 54:425–429

    Article  CAS  Google Scholar 

  • Mandava NB (1988) Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol 39:23–52

    CAS  Google Scholar 

  • Markovic-Housley Z, Degano M, Lamba D, von Roepenack-Lahaye E, Clemens S, Susani M, Ferreira F, Scheiner O, Breiteneder H (2003) Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier. Plant Mol Biol 325:123–133

    CAS  Google Scholar 

  • Marsolais F, Boyd J, Paredes Y, Schinas AM, Garcia M, Elzein S, Varin L (2007) Molecular and biochemical characterization of two brassinosteroid sulfotransferases from Arabidopsis, AtST4a (At2g14920) and AtST1 (At2g03760). Planta 225:1233–1244

    Article  CAS  PubMed  Google Scholar 

  • Mora-Garcia S, Vert G, Yin Y, Cano-Delgado A, Cheong H, Chory J (2004) Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev 18:448–460

    Article  CAS  PubMed  Google Scholar 

  • Mouchel CF, Osmont KS, Hardtke CS (2006) BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature 443:458–461

    Article  CAS  PubMed  Google Scholar 

  • Mussig C, Fischer S, Altman T (2002) Brassinosteroid-regulated gene expression. Plant Physiol 129(3):1241–1251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203–212

    Article  CAS  PubMed  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, Feldmann KA, Tax FE (1999) Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol 121:743–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noguchi T, Fujioka S, Choe S, Takatsuto S, Tax FE, Yoshida S, Feldmann KA (2000) Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiol 124:201–209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nole-Wilson S, Rueschhoff EE, Bhatti H, Franks RG (2010) Synergistic disruptions in seuss cyp85A2 double mutants reveal a role for brassinolide synthesis during gynoecium and ovule development. BMC Plant Biol 10:198

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nomura T, Bishop GJ (2006) Cytochrome P450s in plant steroid hormone synthesis and metabolism. Phytochem Rev 5:421–432

    Article  CAS  Google Scholar 

  • Oh MH, Wang X, Wu X, Zhao Y, Clouse SD, Huber SC (2010) Autophosphorylation of Tyr-610 in the receptor kinase BAK1 plays a role in brassinosteroid signaling and basal defense gene expression. Proc Natl Acad Sci U S A 107:17827–17832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oh MH, Wu X, Clouse SD, Huber SC (2011) Functional importance of BAK1 tyrosine phosphorylation in vivo. Plant Signal Behav 6:400–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oh MH, Kim HS, Wu X, Clouse SD, Zielinski RE, Huber SC (2012a) Calcium/calmodulin inhibition of the Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase provides a possible link between calcium and brassinosteroid signalling. Biochem J 443:515–523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oh MH, Wang X, Clouse SD, Huber SC (2012b) Deactivation of the Arabidopsis BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase by autophosphorylation within the glycine-rich loop. Proc Natl Acad Sci U S A 109:327–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohnishi ST, Godza B, Watanabe B, Fujioka S, Hategan L, Ide K, Shibata K, Yokota K, Szekeres M, Mizutani M (2012) CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation. J Biol Chem 287:31551–31560

    Article  CAS  PubMed  Google Scholar 

  • Park CH, Kim TW, Son SH, Hwang JY, Lee SC, Chang SC, Kim SH, Kim SW, Kim SK (2010) Brassinosteroids control AtEXPA5 gene expression in Arabidopsis thaliana. Phytochemistry 71:380–387

    Article  CAS  PubMed  Google Scholar 

  • Peng P, Zhao J, Zhu Y, Asami T, Li J (2010) A direct docking mechanism for a plant GSK3-like kinase to phosphorylate its substrates. J Biol Chem 285:24646–24653

    Article  CAS  PubMed  Google Scholar 

  • Poppenberger B, Rozhon W, Khan M, Husar S, Adam G, Luschnig C, Fujioka S, Sieberer T (2011) CESTA, a positive regulator of brassinosteroid biosynthesis. EMBO J 30:1149–1161

    Article  CAS  PubMed  Google Scholar 

  • Roh H, Jeong CW, Fujioka S, Kim YK, Lee S, Ahn JH, Choi YD, Lee JS (2012) Genetic evidence for the reduction of brassinosteroid levels by a BAHD acyltransferase-like protein in Arabidopsis. Plant Physiol 159:696–709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Russinova E, Borst JW, Kwaaitaal M, Cano-Delgado A, Yin Y, Chory J, Vries SC (2004) Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and SERK3 (BAK1). Plant Cell 16:3216–3229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryu H, Kim K, Hwang I (2008) Spatial redistribution of key transcriptional regulators in brassinosteroid signaling. Plant Signal Behav 3:278–280

    Article  PubMed Central  PubMed  Google Scholar 

  • Ryu H, Kim K, Cho H, Hwang I (2010) Predominant actions of cytosolic BSU1 and nuclear BIN2 regulate subcellular localization of BES1 in brassinosteroid signaling. Mol Cells 29:291–296

    Article  CAS  PubMed  Google Scholar 

  • Sakurai A, Fujioka S (1997) Studies on biosynthesis of brassinosteroids. Biosci Biotechnol Biochem 61:757–762

    Article  CAS  PubMed  Google Scholar 

  • Schwessinger B, Roux M, Kadota Y, Ntoukakis V, Sklenar J, Jones A, Zipfel C (2011) Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet 7:e1002046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma I, Bhardwaj R, Pati PK (2012) Mitigation of adverse effects of chlorpyrifos by 24- epibrassinolide and analysis of stress markers in a rice variety Pusa Basmati-1. Ecotoxicol Environ Safe 8:72–81

    Article  CAS  Google Scholar 

  • Sharma I, Bhardwaj R, Pati PK (2013a) Stress modulation response of 24-epibrassinolide against imidacloprid in an elite Indica rice variety Pusa Basmati-1. Pest Biochem Physiol 105:144–153

    Article  CAS  Google Scholar 

  • Sharma I, Ching E, Saini S, Bhardwaj R, Pati PK (2013b) Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiol Biochem 69:17–26

    CAS  PubMed  Google Scholar 

  • She J, Han Z, Kim TW, Wang J, Cheng W, Chang J, Shi S, Yang M, Wang ZY, Chai J (2011) Structural insight into brassinosteroid perception by BRI1. Nature 474:472–476

    Article  CAS  PubMed  Google Scholar 

  • Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003) Organ-specific expression of brassinosteroid biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol 131:287–297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sui P, Jin J, Ye S, Mu C, Gao J, Feng H, Shen WH, Yu Y, Dong A (2012) H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice. Plant J 70:340–347

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Fan XY, Cao DM, Tang W et al (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19:765–777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Symons GM, Reid JB (2004) Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol 135:2196–2206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Symons GM, Ross JJ, Jager CE, Reid JB (2008) Brassinosteroid transport. J Exp Bot 59:17–24

    Article  CAS  PubMed  Google Scholar 

  • Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A et al (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Asami T, Yoshida S, Nakamura Y, Matsuo T, Okamoto S (2005) Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism. Plant Physiol 138:1117–1125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321:557–560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang W, Yuan M, Wang R, Yang Y, Wang C et al (2011) PP2A activates brassinosteroid- responsive gene expression and plant growth by dephosphorylating BZR1. Nat Cell Biol 13:124–131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Wang H, Torres QI, Ward JM, Murthy G, Zhang J, Walker JC, Neff MM (2005) BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant J 42:23–34

    Article  CAS  PubMed  Google Scholar 

  • Vardhini BV, Sujatha E, Rao SSR (2011) Brassinosteroids: alleviation of water stress in certain enzymes of sorghum seedlings. J Phytol 3:38–43

    Google Scholar 

  • Vriet C, Russinova E, Reuzeaua C (2012) Boosting crop yields with plant steroids. Plant Cell 24:842–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Chory J (2006) Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313:1118–1122

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410:380–383

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Goshe MB, Soderblom EJ, Phinney BS, Kuchar JA et al (2005) Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase. Plant Cell 17:1685–1703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang L, Xu Y, Zhang C, Ma Q, Joo SH, Kim SK, Xu Z, Chong K (2008a) OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS ONE 3:e3521

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang X, Kota U, He K, Blackburn K, Li J et al (2008b) Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev Cell 15:220–235

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Nagegowda DA, Rawat R, Bouvier-Nave P, Guo D, Bach TJ, Chye ML (2012a) Overexpression of Brassica juncea wild-type and mutant HMG-CoA synthase 1 in Arabidopsis upregulates genes in sterol biosynthesis and enhances sterol production and stress tolerance. Plant Biotechnol J 10:31–42

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Bai MY, Oh E, Zhu JY (2012b) Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46:701–724

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Wang X, Li X, Kamiya Y, Otegui MS, Chory J (2011) Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Sci Signal 4:ra29

    Article  PubMed  CAS  Google Scholar 

  • Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen ZX, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid—induced stress tolerance in cucumber. Plant Physiol 150:801–814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ye Q, Zhu W, Li L, Zhang S, Yin Y, Ma H, Wang X (2010) Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc Natl Acad Sci U S A 107:6100–6105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ye H, Li L, Yin Y (2011) Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways. J Int Plant Biol 53:455–468

    Article  CAS  Google Scholar 

  • Yin YH, Wang ZY, Mora-Garcia S, Li JM, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181–191

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Vafeados D, Tao Y, Yokoda T, Asami T, Chory J (2005) A new class of transcription factors mediate brassinosteroid-regulated gene expression in Arabidopsis. Cell 120:249–259

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Li L, Zola J, Aluru M, Ye H, Foudree A, Guo H, Anderson S, Aluru S, Liu P, Rodermel S, Yin Y (2011) A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J 65:634–646

    Article  CAS  PubMed  Google Scholar 

  • Yuan T, Fujioka S, Takatsuto S, Matsumoto S, Gou X, He K, Russell SD, Li J (2007) BEN1, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulates the levels of brassinosteroids in Arabidopsis thaliana. Plant J 51:220–233

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X et al (2010) Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by Pseudomonas syringae effector. Cell Host Microb 7:290–301

    Article  CAS  Google Scholar 

  • Zhang C, Xu Y, Guo S, Zhu J, Huan Q et al (2012) Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genet 8:e1002686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao B, Li J (2012) Regulation of brassinosteroid biosynthesis and inactivation. J Integr Plant Biol 54:746–759

    Article  CAS  PubMed  Google Scholar 

  • Zhou A, Wang H, Walker JC, Li J (2004) BRL1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling. Plant J 40:399–409

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Isha Sharma was supported by grants received from University Grants Commission (UGC), New Delhi. Navdeep Kaur is a recipient of DBT-JRF fellowship from the Department of Biotechnology, New Delhi, and Shivani Saini was supported by Innovation in Science Pursued for Inspired Research (INSPIRE) Program and Department of Science and Technology, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratap Kumar Pati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Sharma, I., Kaur, N., Saini, S., Pati, P.K. (2013). Emerging Dynamics of Brassinosteroids Research. In: Salar, R., Gahlawat, S., Siwach, P., Duhan, J. (eds) Biotechnology: Prospects and Applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1683-4_1

Download citation

Publish with us

Policies and ethics