Skip to main content

Phenology Modelling and GIS Applications in Pest Management: A Tool for Studying and Understanding Insect-Pest Dynamics in the Context of Global Climate Change

  • Chapter
  • First Online:
Approaches to Plant Stress and their Management

Abstract

Intensification of agricultural yield losses due to pest aggravation in the context of global climate change has been the key focus of ecological research. In this regard, interest in forecasting models is now days growing radically among entomologists to predict the environmental suitability for new and invading agricultural insect pests. This chapter describes the approaches for development of temperature-based phenology models that helps in understanding insect behaviour and physiology under diverse environmental conditions. A few suitable illustrations are provided on how phenology models can be used for simulating variability in insect development times through stochastic and deterministic simulation functions with inclusion of temperature as a main predictor of insect development. Further, discussions were also included on linking of phenology models with geographic information systems (GIS) for mapping pest population growth potentials according to real-time or interpolated temperature data, as a tool for pest risk assessments in different agro-ecological regions and to support the development of management strategies. The concepts and approaches underlying simulation of age-stage-structured populations using cohort-updating and rate summation principle and the use of geostatistical algorithms integrated in GIS for risk mapping are described briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrol Y, Gadgil S, Pant GB (eds) (1996) Climate variability and agriculture. Narosa Publishing House, New Delhi

    Google Scholar 

  • Aggarwal PK (2008) Climate change and Indian agriculture: impacts, adaptation and mitigation. Indian J Agric Sci 78:911–919

    Google Scholar 

  • Allen JC (1976) A modified sine wave method for calculating degree days. Environ Entomol 5:388–396

    Google Scholar 

  • Andrewartha HG, Birch LC (1954) The innate capacity for increase in numbers. In: Andrewartha HG (ed) The distribution and abundance of animals, 3rd impression. University of Chicago Press, Chicago, pp 31–54

    Google Scholar 

  • Anonymous (2010) Training manual on e-Pest surveillance (awareness and surveillance programme for management of major pests of paddy) under Rashtriya Krishi Vikas Yojna-2nd green revolution. Directorate of Agriculture & Food Production, Bhubaneswar, p 54

    Google Scholar 

  • Ascerno ME (1991) Insect phenology and integrated pest management. J Arboric 17:13–15

    Google Scholar 

  • Baker CRB (1991) The validation and use of a life-cycle simulation model for risk assessment of insect pests. Bull OEPP 21:615–622

    Article  CAS  Google Scholar 

  • Bale JS, Hayward SAL (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994

    Article  PubMed  CAS  Google Scholar 

  • Bale J, Masters GJ, Hodkins ID et al (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol 8:1–16

    Article  Google Scholar 

  • Behrens W, Hoffmann KH, Kempa S, Gabler S, Merkel-Wallner G (1983) Effects of diurnal thermoperiods and quickly oscillating temperatures on the development and reproduction of crickets, Gryllus bimaculatus. Oecologia 59:279–287

    Article  Google Scholar 

  • Briere JF, Pracros P, Le Roux AY, Pierre JS (1999) A novel rate model of temperature-dependent development for arthropods. Environ Entomol 28:22–29

    Google Scholar 

  • Cannon RJC (1998) The implications of predicted climate change for insect-pests in the UK, with emphasis on non-indigenous species. Global Change Biol 4:785–796

    Article  Google Scholar 

  • Chahal SK, Bains GS, Dhaliwal LK (2008) Climate change: mitigation and adaptation. In: Abstracts of international conference on climate change, biodiversity and food security in the South Asian region. Punjab state council for science and technology. Chandigarh and United Nations Educational, Scientific and Cultural Organization, New Delhi, 3–4 Nov 2008

    Google Scholar 

  • Chand R, Raju SS (2009) Instability in Indian agriculture during different phases of technology and policy. Indian J Agric Econ 64:187–207

    Google Scholar 

  • Choudhary JS, Prabhakar CS, Moanaro DB, Kumar S (2013) Litchi stink bug (Tessaratoma javanica) outbreak in Jharkhand, India, on litchi. Phytoparasitica 41:73–77

    Article  Google Scholar 

  • Curry GL, Feldman RM, Smith KC (1978) A stochastic model for a temperature dependent population. Theor Popul Biol 13:197–213

    Article  PubMed  CAS  Google Scholar 

  • Dhawan AK, Singh K, Saini S, Mohindru B, Kaur A, Singh G, Singh S (2007) Incidence and damage potential of mealybug, Phenaccous soloenposis Tinsley on cotton in Punjab. Indian J Ecol 34:110–116

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMC, Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberson J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Diver Distrib 17:43–57

    Article  Google Scholar 

  • Fand BB (2012) Modeling the impact of climate change on potential geographic distribution of polyphagous mealybug Phenacoccus solenopsis in India. In: Abstracts of the “IVth national symposium on plant protection in horticultural crops-emerging challenges and sustainable pest management. Association for the advancement of pest management in horticultural ecosystems”, Bangalore, 25–28 Apr 2012

    Google Scholar 

  • Fand BB, Kamble AL, Kumar M (2012) Will climate change pose a serious threat to crop pest management? Int J Sci Res Pub 2:1–15. http://www.ijsrp.org/research-paper-1112.php?rp=P11336

    Google Scholar 

  • Fand BB, Tonnang HEZ, Kumar M, Kamble AL, Bal SK (2013) Temperature-based phenology modeling and GIS-based risk mapping: a tool for forecasting potential changes in the abundance of mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). In: Proceedings of the IVth international insect science congress. University of Agricultural Sciences, Bangalore, 14–18 Feb 2013

    Google Scholar 

  • Firake DM, Behere GT, Firake PD, Azad Thakur NS, Dubal ZB (2012) An outbreak of pine lappet moth, Kunugia latipennis, in mid-altitude hills of Meghalaya state, India. Phytoparasitica 40:231–234

    Article  Google Scholar 

  • Ganeshaiah KN, Barve N, Nath N, Chandrashekara K, Swamy M, Uma Shaanker R (2003) Predicting the potential geographical distribution of the sugarcane woolly aphid using GARP and DIVA-GIS. Curr Sci 85:1526–1528

    Google Scholar 

  • Govindasamy B, Duffy PB, Coquard J (2003) High-resolution simulations of global climate, part 2: effects of increased greenhouse gases. Climate Dyn 21:391–404

    Article  Google Scholar 

  • Gutierrez AP, Pointi L, d’Oultremont T, Ellis CK (2008) Climate change effects on poikilotherm tritrophic interactions. Climate Change 87:67–92

    Article  Google Scholar 

  • Harrington R, Fleming R, Woiwood IP (2001) Climate change impacts on insect management and conservation in temperate regions: can they be predicted? Agric For Entomol 3:233–240

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005a) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hijmans RJ, Guarino L, Jarvis A, O’Brien R, Mathur P, Cruz M, Barrantes I, Rojas Eb (2005b) DIVA-GIS (Version 5.2) manual. p 79

    Google Scholar 

  • Hilder VA, Boulter D (1999) Genetic engineering of crop plants for insect resistance – a critical review. Crop Prot 18:177–191

    Article  Google Scholar 

  • Hurlbert SH (1990) Spatial distribution of the montane unicorn. Oikos 58:257–271

    Article  Google Scholar 

  • IMD (2010) Annual climate summary 2010, India Meteorological Department (Government of India, Ministry of earth sciences). Pune, p 27

    Google Scholar 

  • IPCC (2007) Climate Change 2007 – Impacts, adaptation and vulnerability contribution of Working Group II to the Fourth Assessment Report of the IPCC. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Cambridge University Press, Cambridge, p 976

    Google Scholar 

  • IARI News (2008) Brown plant hopper outbreak in rice. 24:1–2

    Google Scholar 

  • IRRI News (2009) Pest outbreaks in India. Rice today 6. www.ricenews.irri.org

  • Iwao S (1972) Application of the m-m method to the analysis of spatial patterns by changing the quadrat size. Res Popul Ecol 14:97–128

    Article  Google Scholar 

  • Jarvis CH, Baker RHA (2001a) Risk assessment for non-indigenous pests: 2. Accounting for inter-year climate variability. Diver Distrib 7:237–248

    Article  Google Scholar 

  • Jarvis CH, Baker RHA (2001b) Risk assessment for non-indigenous pests: 1. Mapping the outputs of phenology models to assess the likelihood of establishment. Diver Distrib 7:223–235

    Article  Google Scholar 

  • Jhala RC, Bharpoda TM, Patel MG (2008) Phenacoccus solenopsis (Hemiptera: Pseudococcidae), the mealybug species recorded first time on cotton and its alternate host plants in Gujarat, India. Uttar Pradesh J Zool 28:403–406

    Google Scholar 

  • Joshi S, Viraktamath CA (2004) The sugarcane woolly aphid, Ceratovacuna lanigera Zehntner (Hemiptera: Aphididae): its biology, pest status and control. Curr Sci 87:307–316

    Google Scholar 

  • Jumars PA, Thistle D, Jones ML (1977) Detecting two-dimensional spatial structure in biological data. Oecologia 28:109–123

    Article  Google Scholar 

  • Kaiser J (1996) Pests overwhelm Bt cotton crop. Nature 273:423

    CAS  Google Scholar 

  • Kohlmann B, Nix H, Shaw DD (1988) Environmental predictions and distributional limits of chromosomal taxa in the Australian grasshopper Caledia captiva (F.). Oecologia 75:483–493

    Article  Google Scholar 

  • Kranthi KR, Naidu S, Dhawad CS et al (2005) Temporal and intraplant variation in Cry1Ac expression of Bt cotton and its influence on the development of cotton bollworm, Helicoverpa armigera (Hubner), (Noctuidae, Lepidoptera). Curr Sci 89:291–298

    CAS  Google Scholar 

  • Kriticos DJ, Brown JR, Maywald GF, Radford ID, Nicholas DM, Sutherst RW, Adkins SW (2003) SPAnDX: a process-based population dynamics model to explore management and climate change impacts on an invasive alien plant, Acacia nilotica. Ecol Model 163:187–208

    Article  Google Scholar 

  • Kroschel J, Sporleder M, Tonnang HEZ, Juarez H, Carhuapoma P, Gonzales JC, Simon R (2012) Predicting climate-change-caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping. Agric For Meteorol 170:228–241, http://dx.doi.org/10.1016/j.agrformet.2012.06.017

    Article  Google Scholar 

  • Kumar R, Khan ZH, Ramamurthy VV (2009) Topical outbreak of migratory locust, Locusta migratoria migratorioides (Reiche & Fairmaire) in Ladakh valley of Jammu and Kashmir. Biol Forum 1:107–109

    Google Scholar 

  • Lactin DJ, Holliday NJ, Johnson DL, Craigen R (1995) Improved rate model of temperature-dependent development by arthropods. Env Entomol 24:68–75

    Google Scholar 

  • Lal M (2003) Global climate change: India’s monsoon and its variability. J Environ Stud Policy 6:1–34

    Google Scholar 

  • Liebhold AM, Rossi RE, Kemp WP (1993) Geostatistics and geographic information systems in applied insect ecology. Ann Rev Entomol 38:303–327

    Article  Google Scholar 

  • Logan JA (1988) Toward an expert system for development of pest simulation models. Environ Entomol 17:359–376

    Google Scholar 

  • Logan JA, Wollkind DJ, Hoyt SC, Tanigoshi LK (1976) An analytical model for description of temperature dependent phenomenon in arthropods. Environ Entomol 5:1133–1140

    Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  PubMed  CAS  Google Scholar 

  • Mooney HA, Hobbs RJ (eds) (2000) Invasive species in a changing world. Island Press, Washington, DC

    Google Scholar 

  • Nagrare VS, Kranthi S, Biradar VK, Zade NN, Sangode V, Kakde G, Shukla RM, Shivare D, Khadi BM, Kranthi KR (2009) Widespread infestation of the exotic mealybug species, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) on cotton in India. Bull Entomol Res 99:537–541

    Article  PubMed  CAS  Google Scholar 

  • Nagrare VS, Kranthi S, Kumar R, Dhara Jothi B, Amutha M, Deshmukh AJ, Bisane KD, Kranthi KR (2011) Compendium of cotton mealybugs. Central Institute for Cotton Research, Nagpur, 42 p

    Google Scholar 

  • Nietschke BS, Magarey RD, Borchert DM, Calvin DD, Jones E (2007) A developmental database to support insect phenology models. Crop Prot 26:1444–1448

    Article  Google Scholar 

  • Odum EP, Barrett GW (2008) Fundamentals of ecology, 2nd edn. Cengage Learning India Pvt. Ltd., New Delhi, pp 1–10

    Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Oerke EC, Debne HW, Schonbeck F, Weber A (1994) Crop production and crop protection. Elsevier, Amsterdam

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Peacock L, Worner SP (2006) Using analogous climates and global insect distribution data to identify potential sources of new invasive insect pests in New Zealand. N Z J Zool 33:141–145

    Article  Google Scholar 

  • Pedigo LP (2006) Entomology and pest management, 4th edn. Dorling Kindersley (India) Pvt. Ltd., New Delhi, pp 175–210

    Google Scholar 

  • Peterson AT (2003) Indo-US forum workshop on eco-informatics. ATREE, Bangalore, 9–11 June

    Google Scholar 

  • Petzoldt C, Seaman A (2010) Climate change effects on insects and pathogens, climate change and agriculture: promoting practical and profitable responses, New York State IPM Program, 630 W. North St. New York State Agricultural Extension Station, Geneva, NY 14456, pp 6–16. http://www.climateandfarming.org/pdfs/FactSheets/III.2Insects.Pathogens.pdf

  • Phillips SJ, Dudikm M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the 21st international conference on machine learning. Banff

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Porter JH, Parry ML, Carter TR (1991) The potential effects of climatic change on agricultural insect-pests. Agric Forest Meteorol 57:221–240

    Article  Google Scholar 

  • Rafee CM (2010) Status of sugarcane woolly aphid, Certovacuna lanigera Zehntner in Thunga bhadra command area. Karnataka J Agric Sci 23:127

    Google Scholar 

  • Rao MS, Khan MA, Srinivas K, Vanaja M, Rao GGS, Ramakrishna YS (2006) Effects of elevated carbon dioxide and temperature on insect-plant interactions – a review. Agric Rev 27:200–207

    Google Scholar 

  • Rao GGSN, Rao AVMS, Rao VUM (2009) Trends in rainfall and temperature in rainfed India in previous century. In: Aggarwal PK (ed) Global climate change and Indian agriculture case studies from ICAR network project. ICAR Publication, New Delhi, pp 71–73

    Google Scholar 

  • Ratte HT (1985) Temperature and insect development. In: Hoffman KH (ed) Environmental physiology and biochemistry of insects. Springer, New York, pp 33–66

    Google Scholar 

  • Reed W, Pawar CS (1982) Heliothis: a global problem. In: ICRISAT proceedings of the international workshop on Heliothis Management, international crops research institute for the semi-arid tropics, Hyderabad, 15–20 Nov 1981

    Google Scholar 

  • Rhoades DF (1985) Offensive-defensive interactions between herbivores and plants: their relevance in herbivore population dynamics and ecological theory. Am Nat 125:205–238

    Article  Google Scholar 

  • Samra JS (2003) Impact of climate and weather on Indian agriculture. Indian Soc Soil Sci 51:418–430

    Google Scholar 

  • Samra JS, Singh G (2004) Heat wave of March 2004: impact on agriculture. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Sawyer AJ (1989) Inconstancy of Taylor’s b: simulated sampling with different quadrat sizes and spatial distributions. Res Popul Ecol 31:11–24

    Article  Google Scholar 

  • Scheldeman X, van Zonneveld M (2010) Training manual on spatial analysis of plant diversity and distribution. Bioversity International, Rome, p 179

    Google Scholar 

  • Schoolfield RM, Sharpe PJH, Magnuson CE (1981) Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J Theor Biol 88:719–731

    Article  PubMed  CAS  Google Scholar 

  • Sharma HC, Dhillon MK, Kibuka J, Mukuru SZ (2005) Plant defense responses to sorghum spotted stem borer, Chilo partellus under irrigated and drought conditions. Int Sorghum Millets Newsl 46:49–52

    Google Scholar 

  • Sharpe PJH, DeMichele DW (1977) Reaction kinetics of poikilotherm development. J Theor Biol 64:649–670

    Article  PubMed  CAS  Google Scholar 

  • Sharpe PJH, Schoolfield RM, Butler GD (1981) Distribution model of Heliothis zea (Lepidoptera: Noctuidae) development times. Can Entomol 113:845–856

    Article  Google Scholar 

  • Sporleder M, Kroschel J, Gutierrez Quispe MR, Lagnaoui A (2004) A temperature-based simulation model for the potato Tuberworm, Phthorimaea operculella Zeller (Lepidoptera; Gelechiidae). Environ Entomol 33:477–486

    Article  Google Scholar 

  • Sporleder M, Simon R, Juarez H, Kroschel J (2008) Regional and seasonal forecasting of the potato tuber moth using a temperature-driven phenology model linked with geographic information systems. In: Kroschel J, Lacey L (eds) Integrated pest management for the potato Tuber Moth, Phthorimaea operculella Zeller – a potato pest of global importance. Tropical agriculture, advances in crop research. Margraf Publishers, Weikersheim, pp 15–30

    Google Scholar 

  • Sporleder M, Simon R, Gonzales J, Carhuapoma P, Juarez H, De Mendiburu F, Kroschel J (2009) ILCYM – Insect life cycle modeling: a software package for developing temperature-based insect phenology models with applications for regional and global pest risk assessments and mapping. In: proceeding of international society for tropical root crops (ISTRC). Lima

    Google Scholar 

  • Sporleder M, Tonnang HEZ, Juarez H, Carhuapoma P, Gonzales JC, Simon R, Kroschel J (2012) ILCYM – insect life cycle modeling (version 3.0): a software package for developing temperature-based insect phenology models with applications to regional and global analysis of insect population and mapping (user manual). International Potato Center, Lima, p 124

    Google Scholar 

  • Srikanth J (2004) The epidemic of sugarcane woolly aphid Ceratovacuna lanigera Zehntner (Homoptera: Aphididae) in western India: an appraisal. In: Balasundaram N (ed) Proceedings of national seminar on use of appropriate varieties and management practices for improving recovery of sugarcane, Sugarcane Breeding Institute, Coimbatore

    Google Scholar 

  • Srikanth J (2007) World and Indian scenario of sugarcane woolly aphid. In: Mukunthan N, Srikanth J, Singaravelu B, Rajula Shanthy T, Thiagarajan R, Puthira Prathap D (eds) Woolly aphid management in sugarcane, vol 154. Extension Publication, Sugarcane Breeding Institute, Coimbatore, pp 1–12

    Google Scholar 

  • Steinbauer MJ, Yonow T, Reid IA, Cant R (2002) Ecological biogeography of species of Gelonus, Acantholybas and Amorbus in Australia. Aust Ecol 27:1–25

    Article  Google Scholar 

  • Stinner RE, Gutierrez AP, Butler GD (1974) An algorithm for temperature-dependent growth rate simulation. Can Entomol 106:519–524

    Article  Google Scholar 

  • Stockwell DRB, Noble IR (1992) Induction of sets of rules from animal distribution data: a robust and informative method of data analysis. Math Comp Simul 33:385–390

    Article  Google Scholar 

  • Sutherst R (2000) Climate change and invasive species: a conceptual framework. In: Mooney H, Hoobs R (eds) Invasive species in a changing world. Island Press, Washington, DC, pp 211–240

    Google Scholar 

  • Sutherst RW, Maywald GF (1990) Impact of climate change on pests and diseases in Australasia. Search (Sydney) 21:230–232

    Google Scholar 

  • Sutherst RW, Maywald GF, Bottomly W (1991) From CLIMEX to PESKY, a generic expert system for risk assessment. EPPO Bull 21:595–608

    Article  Google Scholar 

  • Tanwar RK, Anand P, Panda SK, Swain NC, Garg DK, Singh SP, Sathya Kumar S, Bambawale OM (2010a) Rice swarming caterpillar (Spodoptera mauritia) and its management strategies, vol 24, Technical bulletin. National Centre for Integrated Pest Management, New Delhi

    Google Scholar 

  • Tanwar RK, Jeyakumar P, Vennila S (2010b) Papaya mealybug and its management strategies, vol 22, Technical bulletin. National Centre for Integrated Pest Management, New Delhi, p 26

    Google Scholar 

  • Taylor LR (1984) Assessing and interpreting the spatial distributions of insect populations. Ann Rev Entomol 29:321–357

    Article  Google Scholar 

  • Taylor LR, Woiwood IP, Perry JN (1978) The density-dependence of spatial behaviour and the variety of randomness. J Animal Ecol 47:383–406

    Article  Google Scholar 

  • Theilert W (2006) A unique product: the story of the imidacloprid stress shield. Pflanzenschutz-Nachrichten Sci Forum Bayer 59:73–86

    Google Scholar 

  • Tripathi GM, Singh SK, Kumar M (2008) Role of biotic and abiotic factors on the population dynamics of sugarcane woolly aphid, Ceratovacuna lanigera Zehntner and its natural enemies in sugarcane. Curr Sci 94:718–720

    Google Scholar 

  • Trnka M, Muska F, Semeradova D, Dubrovsky M, Kocmankova E, Zalud Z (2007) European corn borer life stage model: regional estimates of pest development and spatial distribution under present and future climate. Ecol Model 207:61–84

    Article  Google Scholar 

  • Van Sickle GA (1989) GIS-a tool in forest pest management. In: Proceedings of GIS-89: a wider perspective. Forestry, Canada, pp 213–219

    Google Scholar 

  • Venette RC, Kriticos DJ, Magarey RD, Koch FH, Baker RHA, Worner SP, Gomez NN, Raboteaux DW, McKenney EJ, Dobesberger D, Yemshanov PJ, De Barro WD, Hutchison G, Fowler T, Pedlar J, Kalaris M (2010) Pest risk maps for invasive alien species: a roadmap for improvement. Bio Sci 60:349–362

    Google Scholar 

  • Vennila S, Prasad YG, Prabhakar M, Rishi K, Nagrare V, Amutha MD, Agarwal M, Sreedevi G, Venkateswarlu B, Kranthi KR, Bambawale OM (2011) Spatio-temporal distribution of host plants of cotton mealybug, Phenacoccus solenopsis Tinsley in India, vol 26, Technical bulletin. National Centre for Integrated Pest Management, New Delhi, p 50

    Google Scholar 

  • Wagner TL, Wu HI, Sharpe PJH, Coulson RN (1984) Modeling distributions of insect development time: a literature review and application of the Weibull function. Ann Entomol Soc Am 77:474–487

    Google Scholar 

  • Wagner TL, Wu HI, Feldman RM, Sharpe PJH, Coulson RN (1985) Multiple cohort approach for simulating development of insect populations under variable temperatures. Ann Entomol Soc Am 78:691–704

    Google Scholar 

  • Wang XY, Huang XL, Jiang LY, Qiao GX (2010a) Predicting potential distribution of chestnut phylloxerid (Hemiptera: Phylloxeridae) based on GARP and Maxent ecological niche models. J Appl Entomol 134:45–54

    Article  Google Scholar 

  • Wang Y, Watson GW, Zhang R (2010b) The potential distribution of an invasive mealybug Phenacoccus solenopsis and its threat to cotton in Asia. Agric Fores Entomol 12:403–416

    Article  Google Scholar 

  • Ward NL, Masters GJ (2007) Linking climate change and species invasion: an illustration using insect herbivores. Global Change Biol 13:1605–1615

    Article  Google Scholar 

  • Wilmot Senaratne KAD, Palmer WA, Sutherst RW (2006) Use of CLIMEX modelling to identify prospective areas for exploration to find new biological control agents for prickly acacia. Aust J Entomol 45:298–302

    Article  Google Scholar 

  • Worner SP (1992) Performance of phenological models under variable temperature regimes: consequences of the Kaufmann or rate summation effect. Environ Entomol 21:689–699

    Google Scholar 

  • Yadav DS, Subhash C, Selvraj K (2010) Agro-ecological zoning of brown planthopper, {Nilaparvata lugens (Stal.)} incidence on rice {Oryza sativa (L.)}. J Sci Ind Res 69:818–822

    Google Scholar 

  • Yamamura K, Kiritani K (1998) A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl Entomol Zool 33:289–298

    Google Scholar 

  • Yonow T, Zalucki MP, Sutherst RW, Dominiak BC, Maywald GF, Maelzer DA, Kriticos DJ (2004) Modeling the population dynamics of the Queensland fruit fly Bactrocera (Dacus) tryoni – a cohort based approach incorporating the effects of weather. Ecol Model 173:9–30

    Article  Google Scholar 

  • Zalucki MP, Furlong MJ (2005) Forecasting Helicoverpa populations in Australia: a comparison of regression based models and a bioclimatic based modelling approach. Insect Sci 12:45–56

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Director, National Institute of Abiotic Stress Management, Baramati, for extending his cooperation and support in bringing out compilation of this document. We are grateful to M. Sujithra, Scientist, Division of Entomology, Indian Agricultural Research Institute, New Delhi, for providing photographs on brown plant hopper incidence in paddy fields. All the online sources of information in public domain referred in this chapter have been duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babasaheb B. Fand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Fand, B.B., Choudhary, J.S., Kumar, M., Bal, S.K. (2014). Phenology Modelling and GIS Applications in Pest Management: A Tool for Studying and Understanding Insect-Pest Dynamics in the Context of Global Climate Change. In: Gaur, R., Sharma, P. (eds) Approaches to Plant Stress and their Management. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1620-9_6

Download citation

Publish with us

Policies and ethics