Skip to main content

Plant–Microbe Partnerships: Implications for Growth and Plant Health

  • Chapter
  • First Online:
Plant Microbe Symbiosis: Fundamentals and Advances

Abstract

The rhizosphere can be defined as the zone of soil around plant roots whereby soil properties are influenced by the presence and activity of the root. Changes to the physical, chemical, and biological properties of rhizosphere soil have significant influence on the subsequent growth and health of plants. Interactions between plant roots and soil microorganisms are ubiquitous and are an essential component of ecosystem function. It has become increasingly evident that root interactions with soil microorganisms are intricate and involve highly complex communities that function in very heterogeneous environments. Although many plant-associated bacteria have beneficial effects on their host, their importance during plant growth and development is still underestimated. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria. Research into how plant growth can be promoted has mainly concentrated on rhizobacteria. More recently, however, attention has focused on the plant growth-promoting capacity of endophytes. Mechanisms of plant growth promotion by plant-associated bacteria vary greatly and can be broadly categorized into direct and indirect effects. The purpose of this chapter is to examine how microorganisms can help growth and plant health and its use in new area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ae N, Arihara J, Okada K, Yoshihara T, Johansen C (1990) Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent. Science 248:477–480

    Article  PubMed  CAS  Google Scholar 

  • Alikhani HA, Saleh-Rastin N, Antoun H (2006) Phosphate solubilisation activity of rhizobia native to Iranian soils. Plant Soil 287:35–41

    Article  CAS  Google Scholar 

  • Antoun H, Beauchamp J, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Rhaphanus sativus L.). Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20:1–9

    Article  Google Scholar 

  • Bais HP, Park S-W, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  PubMed  CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  PubMed  CAS  Google Scholar 

  • Burdman S, Volpin H, Kigel J, Kapulnik Y, Okon Y (1996) Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Appl Environ Microbiol 62:3030–3033

    PubMed  CAS  Google Scholar 

  • Burdman S, Vedder D, German M, Itzigsohn R, Kigel J, Jurkevitch E, Okon Y (1998) Legume crop yield promotion by inoculation with Azospirillum. In: Elmerich C, Kondorosi A, Newton WE (eds) Biological nitrogen fixation for the 21st century. Kluwer Academic Publishers, Dordrecht, pp 609–612

    Google Scholar 

  • Cho MJ, Harper JE (1991) Effect of localized nitrate application on isoflavonoid concentration and nodulation in split-root systems of wild-type and nodulation-mutant soybean plants. Plant Physiol 95:1106–1112

    Article  PubMed  CAS  Google Scholar 

  • Crowley D, Rengel Z (1999) Biology and chemistry of rhizosphere influencing nutrient availability. In: Rengel Z (ed) Mineral nutrition of crops: fundamental mechanisms and implications. The Haworth Press, New York, pp 1–40

    Google Scholar 

  • Dakora FD, Phillips DA (1996) Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiol Mol Plant Pathol 49:1–20

    Article  CAS  Google Scholar 

  • Dardanelli MS, Fernández FJ, Espuny MR, Rodríguez MA, Soria ME, Gil Serrano AM, Okon Y, Megías M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    Article  CAS  Google Scholar 

  • Dardanelli MS, Carletti SM, Paulucci NS, Medeot DB, Rodriguez Cáceres EA, Vita FA, Bueno MA, Fumero MV, Garcia MB (2010a) Benefits of plant growth promoting rhizobacteria (PGPR) and rhizobia in agriculture. In: Maheshwari DK (ed) Bacteria and plant health. Springer, Berlin, pp 1–20

    Chapter  Google Scholar 

  • Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR, López-Baena FJ, Bellogín RA, Megías M, Ollero FJ (2010b) Effect of the presence of the PGPR Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493

    Article  CAS  Google Scholar 

  • Dardanelli MS, Fernandez de Cordoba FJ, Estévez J, Contreras R, Cubo MT, Rodriguez-Carvajal MA, Gil-Serrano AM, Lopez-Baena FJ, Bellogin R, Manyani H, Ollero FJ, Megias M (2012) Changes in flavonoids secreted by Phaseolus vulgaris roots in the presence of salt and the plant growth-promoting rhizobacterium Chryseobacterium balustinum. Appl Soil Ecol 57:31–38

    Article  Google Scholar 

  • de Hoff P, Hirsch AM (2003) Nitrogen comes down to earth: report from the 5th European nitrogen fixation conference. Mol Plant Microbe Interact 16:371–375

    Article  PubMed  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  PubMed  CAS  Google Scholar 

  • Dixon R, Achnine L, Kota P, Liu CJ, Reddy M, Wang L (2002) The phenylpropanoid pathway and plant defence a genomics perspective. Mol Plant Pathol 3:371–390

    Article  PubMed  CAS  Google Scholar 

  • Dobbelaere S, Okon Y (2007) The plant growth promoting effect and plant responses. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Kluwer Academic Publishers, Dordrecht, pp 1–26

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Estévez J, Dardanelli MS, Megías M, Rodriguez-Navarro DN (2009) Symbiotic performance of common bean and soybean co-inoculated with rhizobia and Chryseobacterium balustinum Aur9 under moderate saline conditions. Symbiosis 49:29–36

    Article  Google Scholar 

  • Geurts R, Fedorova E, Bisseling T (2005) Nod factor signaling genes and their function in the early stages of Rhizobium infection. Curr Opin Plant Biol 8:346–352

    Article  PubMed  CAS  Google Scholar 

  • Goicoechea N, Antolín MC, Sánchez-Díaz M (1997) Influence of arbuscular mycorrhizae and Rhizobium on nutrient content and water relations in drought-stressed alfalfa. Plant Soil 192:261–268

    Article  CAS  Google Scholar 

  • Gregory P (2006) The rhizosphere. In: Gregory P (ed) Plant roots: growth, activity and interaction with soils. Blackwell Publishing, Iowa, pp 216–252

    Google Scholar 

  • Harmsen J, Rulkens W, Eijsackers H (2005) Bioavailability, concept for understanding or tool for predicting? Land Contam Reclam 13:161–171

    Google Scholar 

  • Hartwig UA, Phillips DA (1991) Release and modification of nod-gene inducing flavonoids from alfalfa seeds. Plant Physiol 95:804–807

    Article  PubMed  CAS  Google Scholar 

  • Jebara M, Drevon JJ, Aouani ME (2001) Effects of hydroponic culture system and NaCl on interactions between common bean lines and native rhizobia from Tunisian soils. Agronomie 21:601–605

    Article  Google Scholar 

  • Jourand P, Giraud E, Bena G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273

    Article  PubMed  CAS  Google Scholar 

  • Kramer R, Hindorf H, Jha H, Kallage J, Zilliken F (1984) Antifungal activity of soybean and chickpea isoflavones and their reduced derivatives. Phytochemistry 23:2203–2205

    Article  Google Scholar 

  • Lemanceau P, Bauer P, Kraemer S, Briat JF (2009) Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant Soil 321:513–535

    Article  CAS  Google Scholar 

  • Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX (2008) Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58:1409–1413

    Article  PubMed  CAS  Google Scholar 

  • Lucas García JA, Probanza A, Ramos B, Barriuso J, Gutiérrez Mañero FJ (2004a) Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi. Plant Soil 267:143–153

    Article  Google Scholar 

  • Lucas García JA, Probanza A, Ramos B, Colón Flores JJ, Gutiérrez Mañero FJ (2004b) Effects of plant growth promoting rhizobacteria (PGPRs) on the biological nitrogen fixation, Nodulation, and growth of Lupinus albus L. cv. Multolupa. Eng Life Sci 4:71–77

    Article  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  CAS  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the β-subclass of Proteobacteria. Nature 411:948–950

    Article  PubMed  CAS  Google Scholar 

  • Parmar N, Dadarwal KR (2001) Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria. J Appl Microbiol 86:36–44

    Article  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Phillips DA, Fox TC, King MD, Bhuvaneswari TV, Teuber LR (2004) Microbial products trigger amino acid exudation from plant roots. Plant Physiol 136:2887–2894

    Article  PubMed  CAS  Google Scholar 

  • Puente ME, Bashan Y, Li CY, Lebsky VK (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biol 6:629–642

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soil borne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Rao JR, Cooper JE (1994) Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms. J Bacteriol 176:5409–5413

    PubMed  CAS  Google Scholar 

  • Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Torres-Gutiérrez R, El-Howeity M, Michiels J, Vanderleyden J (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161

    Article  CAS  Google Scholar 

  • Rivas R, Willems A, Subba-Rao NS, Mateos PF, Dazzo FB, Kroppenstedt RM, Martínez-Molina E, Gillis M, Velázquez E (2003) Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26:47–53

    Article  PubMed  CAS  Google Scholar 

  • Rodelas B, González-López J, Salmerón V, Pozo C, Martínez-Toledo MV (1996) Enhancement of nodulation, N2-fixation and growth of faba bean (Vicia fabaL.) by combined inoculation with Rhizobium leguminosarum bv. viceae and Azospirillum brasilense. Symbiosis 21:175–186

    Google Scholar 

  • Rodelas B, González-López J, Martínez-Toledo MV, Pozo C, Salmerón V (1999) Influence of Rhizobium/Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of faba bean (Vicia faba L.). Biol Fertil Soils 29:165–169

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  CAS  Google Scholar 

  • Runge-Metzger A (1995) Closing the cycle: obstacles to efficient P management for improved global food security. In: Tiessen H (ed) Phosphorus in the global environment: transfers, cycles and management. Wiley, New York, pp 27–42

    Google Scholar 

  • Sarig S, Kapulnik Y, Okon Y (1986) Effect of Azospirillum inoculation on nitrogen fixation and growth of several winter legumes. Plant Soil 90:335–342

    Article  Google Scholar 

  • Schenk PM, Carvalhais LC, Kazan K (2012) Unraveling plant-microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30:177–184

    Article  PubMed  CAS  Google Scholar 

  • Schlaman HRM, Phillips DA, Kondorosi E (1998) Genetic organization and transcripcional regulation of rhizobial nodulation genes. In: Spaink HP, Kondorosi A, Hooykaas HJJ (eds) The Rhizobiaceae, the molecular biology of model plant associated bacteria. Kluwer Academic Publishers, Dordrecht, pp 371–432

    Google Scholar 

  • Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signalsby rhizosphere microorganisms. Environ Microbiol 8:1867–1880

    Article  PubMed  CAS  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  PubMed  CAS  Google Scholar 

  • Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  PubMed  CAS  Google Scholar 

  • Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R, Ludeña D, Mateos PF, Martınez-Molina E, Velázquez E (2004) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327

    Article  Google Scholar 

  • Valverde A, Velázquez E, Fernández-Santos F, Vizcaíno N, Rivas R, Mateos PF, Martínez-Molina E, Igual JM, Willems A (2005) Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989

    Article  PubMed  CAS  Google Scholar 

  • van Berkum P, Eardly BD (2002) The aquatic budding bacterium Blastobacter denitrificans is a nitrogen-fixing symbiont of Aeschynomene indica. Appl Environ Microbiol 68:1132–1136

    Article  PubMed  Google Scholar 

  • van Loon LC, Bakker PAHM (2005) Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 39–66

    Google Scholar 

  • VanEtten H (1976) Antifungal activity of pterocarpans and other selected isoflavonoids. Phytochemistry 15:655–659

    Article  CAS  Google Scholar 

  • Vargas LK, Lisboa BB, Giongo A, Beneduzi A, Pereira Passaglia LM (2010) Potential of rhizobia as plant growth-promoting rhizobacteria. In: Khan MS, Zaide A, Musarrat J (eds) Microbes for legume improvement. Springer, Wien, pp 137–156

    Chapter  Google Scholar 

  • Velázquez E, García-Fraile P, Ramirez-Bahena MH, Rivas R, Martínez-Molina E (2010) Bacteria involved in nitrogen–fixing legume simbiosis: current taxonomic perspective. In: Khan MS, Zaide A, Musarrat J (eds) Microbes for legume improvement. Springer, Wien, pp 1–25

    Chapter  Google Scholar 

  • Volpin H, Burdman S, Castro-Sowinski S, Kapulnik Y, Okon Y (1996) Inoculation with Azospirillum increased exudation of rhizobial nod-gene inducers by alfalfa roots. Mol Plant Microbe Interact 9:388–394

    Article  CAS  Google Scholar 

  • Welbaum G, Sturz AV, Dong Z, Nowak J (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:283–284

    Article  Google Scholar 

  • Zaidi A, Ahemad M, Oves M, Ahmad E, Khan MS (2010) Role of phosphate-solubilizing bacteria in legume improvement. In: Khan MS, Zaide A, Musarrat J (eds) Microbes for legume improvement. Springer, Wien, pp 273–292

    Chapter  Google Scholar 

  • Zheng XY, Sinclair JB (1996) Chemotactic response of Bacillus megaterium strain B153-2-2 to soybean root and seed exudates. Physiol Mol Plant Pathol 48:21–35

    Article  CAS  Google Scholar 

Download references

Acknowledgements

 This research was partially supported by the Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto (SECyT-UNRC) and CONICET PIP 112-200801-00537 and PID Res. Ref MINCyT 113/201. NP, LG, JV, and AC are fellows of CONICET. MSD is member of the research career of CONICET, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Dardanelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Paulucci, N.S. et al. (2013). Plant–Microbe Partnerships: Implications for Growth and Plant Health. In: Arora, N. (eds) Plant Microbe Symbiosis: Fundamentals and Advances. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1287-4_3

Download citation

Publish with us

Policies and ethics