Skip to main content

A Comparative Perspective on the Human Temporal Lobe

  • Chapter
  • First Online:
Digital Endocasts

Abstract

The temporal lobe is a morphological specialization of primates resulting from an expansion of higher-order visual cortex that is a hallmark of the primate brain. Among primates, humans possess a temporal lobe that has significantly expanded. Several uniquely human cognitive abilities, including language comprehension, semantic memory, and aspects of conceptual processing, are represented in the temporal lobe. Understanding how the temporal lobe has been modified and reorganized in the human lineage is crucial to understanding how it supports human cognitive specializations. Identifying these structural modifications requires a direct comparison with other primates, with special attention to our closest relatives, the chimpanzees. Comparative examination of data from architectonics, tract tracing, and newer imaging methodologies suggests modifications to external morphology (gyri and sulci), preferential expansion of association areas, and elaboration of white matter fasciculi, distinguishing the human temporal lobe from those of Old World monkeys. Chimpanzees and humans share some of these features of cortical expansion, although more research is needed in order to elucidate whether humans possess simply a large hominoid temporal lobe or whether important reorganization has happened since our divergence from chimpanzees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allison T, Begleiter A, McCarthy G, Roessler E, Nobre AC, Spencer DD (1993) Electrophysiological studies of color processing in human visual cortex. Electroencephalogr Clin Neurophysiol 88:343–355

    Article  Google Scholar 

  • Allison T, Ginter H, McCarthy G, Nobre AC, Puce A, Luby M, Spencer DD (1994) Face recognition in human extrastriate cortex. J Neuro-Oncol 71:821–825

    Google Scholar 

  • Allman J (1982) Reconstructing the evolution of the brain in primates through the use of comparative neurophysiological and neuroanatomical data. In: Armstrong E, Falk D (eds) Primate brain evolution. Springer, New York, pp 13–28

    Chapter  Google Scholar 

  • Allman JM, Kaas JH (1971) A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Res 31(1):85–105

    Article  Google Scholar 

  • Allman JM, Kaas JH, Lane RH (1973) The middle temporal visual area (MT) in the bushbaby, Galago senegalensis. Brain Res 57(1):197–202

    Article  Google Scholar 

  • Anwander A, Tittgemeyer M, von Cramon DY, Friederici AD, Knosche TR (2007) Connectivity-based parcellation of Broca’s area. Cereb Cortex 17:816–825

    Article  Google Scholar 

  • Bailey P, von Bonin G (1951) The isocortex of man. University of Illinois Press, Urbana

    Google Scholar 

  • Bailey P, von Bonin G, Mcculloch WS (1950) The isocortex of the chimpanzee. University of Illinois Press, Urbana

    Google Scholar 

  • Baleydier C, Mauguiere F (1980) The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis. Brain 103:525–554

    Article  Google Scholar 

  • Barton JJ (1998) Higher cortical visual function. Curr Opin Ophthalmol 9:40–45

    Article  Google Scholar 

  • Bastir M, Rosas A (2005) Hierarchical nature of morphological integration and modularity in the human posterior face. Am J Phys Anthropol 128:26–34

    Article  Google Scholar 

  • Bastir M, Rosas A, Kuroe K (2004) Petrosal orientation and mandibular ramus breadth: evidence for an integrated petroso-mandibular developmental unit. Am J Phys Anthropol 123:340–350

    Article  Google Scholar 

  • Bastir M, Rosas A, O’Higgins P (2006) Craniofacial levels and the morphological maturation of the human skull. J Anat 209:637–654

    Article  Google Scholar 

  • Bastir M, Rosas A, Lieberman DE, O’Higgins P (2008) Middle cranial fossa anatomy and the origin of modern humans. Anat Rec 291:130–140

    Article  Google Scholar 

  • Bastir M, Böhme M, Sanchiz B (2014) Middle Miocene remains of Alytes (Anura, Alytidae) as an example of the unrecognized value of fossil fragments for evolutionary morphology studies. J Vertebr Paleontol 34:69–79

    Article  Google Scholar 

  • Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, Dronkers NF (2003) Voxel-based lesion-symptom mapping. Nat Neurosci 6:448–450

    Article  Google Scholar 

  • Beevor CE (1891) On the course of the fibres of the cingulum and the posterior parts of the corpus callosum and fornix in the marmoset monkey. Philos Trans R Soc London B 182:135–199

    Article  Google Scholar 

  • Bernal B, Ardila A (2009) The role of the arcuate fasciculus in conduction aphasia. Brain 132:2309–2316

    Article  Google Scholar 

  • Binder JR, Desai RH (2011) The neurobiology of semantic memory. Trends Cogn Sci 15:527–536

    Article  Google Scholar 

  • Binder JR, Medler DA, Westbury CF, Liebenthal E, Buchanan L (2006) Tuning of the human left fusiform gyrus to sublexical orthographic structure. NeuroImage 33:739–738

    Article  Google Scholar 

  • Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19:2767–2796

    Article  Google Scholar 

  • Blaizot XF, Mansilla F, Insausti AM, Constans JM, Salinas-Alaman A, Pro-Sistiaga P, Mohedano-Moriano A, Insausti R (2010) The human parahippocampal region: I. Temporal pole cytoarchitectonic and MRI correlation. Cereb Cortex 20:2198–2212

    Article  Google Scholar 

  • Bonner MF, Price AR (2013) Where is the anterior temporal lobe and what does it do? J Neurosci 33:4213–4215

    Article  Google Scholar 

  • Brodmann K (1905) Beitrage zur histologischen Localisation der Grosshirnrinde. Dritte Mitteilung. Die Rindefelder der niederen Affen. J Psychol Neurol 4:177–226

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig

    Google Scholar 

  • Bruner E (2015) Functional craniology and brain evolution. In: Bruner E (ed) Human paleoneurology. Springer, Cham, pp 57–94

    Google Scholar 

  • Bryant KL, Li L, Preuss TM (2016) Reorganization of temporal association cortico-cortical connectivity in hominoids. The American Association of Physical Anthropologists’ 85th Annual Meeting. Atlanta

    Google Scholar 

  • Burdach KF (1822) Vom Baue und Leben des Gehirns. Dyk, Leipzig

    Google Scholar 

  • Butler RA, Lambon Ralph MA, Woollams AM (2014) Capturing multidimensionality in stroke aphasia: mapping principal behavioral components to neural structures. Brain 137:3248–3266

    Article  Google Scholar 

  • Calarge C, Andreasen NC, O’Leary DS (2003) Visualizing how one brain understands another: a PET study of theory of mind. Am J Psychiatry 160:1954–1964

    Article  Google Scholar 

  • Call J, Tomasello M (1999) A nonverbal false belief task: the performance of children and great apes. Child Dev 70:381–395

    Article  Google Scholar 

  • Call J, Tomasello M (2008) Does the chimpanzee have a theory of mind? 30 years later. Trends Cogn Sci 12:187–192

    Article  Google Scholar 

  • Cancelliere AEB, Kertesz A (1990) Lesion localization in acquired deficits of emotional expression and comprehension. Brain Cogn 13:133–147

    Article  Google Scholar 

  • Cantalupo C, Oliver J, Smith J, Nir T, Taglialatela JP, Hopkins WD (2009) The chimpanzee brain shows human-like perisylvian asymmetries in white matter. Eur J Neurosci 30:431–438

    Article  Google Scholar 

  • Caspers S, Schleicher A, Bacha-Trams M, Palomero-Gallagher N, Amunts K, Zilles K (2013) Organization of the human inferior parietal lobule based on receptor architectonics. Cereb Cortex 23:615–628

    Article  Google Scholar 

  • Catani M (2006) Diffusion tensor magnetic resonance imaging tractography in cognitive disorders. Curr Opin Neurol 19:599–606

    Article  Google Scholar 

  • Catani M, ffytche DH (2005) The rises and falls of disconnection syndromes. Brain 128:2224–2239

    Article  Google Scholar 

  • Catani M, Mesulam M (2008) The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex 44:953–961

    Article  Google Scholar 

  • Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132

    Article  Google Scholar 

  • Catani M, Jones DK, Donato R, ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126:2093–2107

    Article  Google Scholar 

  • Catani M, Jones DK, ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16

    Article  Google Scholar 

  • Chao LL, Haxby JV, Martin A (1999) Attribute-based neural substrates in posterior temporal cortex for perceiving and knowing about objects. Nat Neurosci 2:913–919

    Article  Google Scholar 

  • Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans AC (2008) Revealing modular architecture chimpanzee health improvement, protection, and maintenance act. 42 U.S.C. § 283m

    Google Scholar 

  • Clarke S, Miklossy J (1990) Occipital cortex in man: organization of callosal connections, related myelo-and cytoarchitecture, and putative boundaries of functional visual areas. J Comp Neurol 298:188–214

    Article  Google Scholar 

  • Coccia M, Bartolini M, Luzzi S, Provinciali L, Lambon Ralph MA (2004) Semantic memory is an amodal, dynamic system: evidence from the interaction of naming and object use in semantic dementia. Cogn Neuropsychol 21:513–527

    Article  Google Scholar 

  • Cohen L, Dehaene S, Naccache L, Lehéricy S, Dehaene-Lambertz G, Hénaff MA, Michel F (2000) The visual word form area. Brain 123:291–307

    Article  Google Scholar 

  • Copland DA, de Zubicaray GI, McMahon K, Wilson SJ, Eastburn M, Chenery HJ (2003) Brain activity during automatic semantic priming revealed by event-related functional magnetic resonance imaging. NeuroImage 20:302–310

    Article  Google Scholar 

  • Curran EJ (1909) A new association fiber tract in the cerebrum with remarks on the fiber tract dissection method of studying the brain. J Comp Neurol 19:645–656

    Google Scholar 

  • Damasio H, Damasio AR (1980) The anatomical basis of conduction aphasia. Brain 103:337–350

    Article  Google Scholar 

  • Damasio H, Tranel D, Grabowski T, Adolphs R, Damasio A (2004) Neural systems behind word and concept retrieval. Cognition 92:179–229

    Article  Google Scholar 

  • Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 213:525–533

    Article  Google Scholar 

  • Datta R, Lee J, Duda J, Avants BB, Vite CH, Tseng B, Aguirre GK (2012) A digital atlas of the dog brain. PLoS One 7:e52140

    Article  Google Scholar 

  • Davis LE (1921) An anatomic study of the inferior longitudinal fasciculus. Arch Neurol Psychiatr 5:370–381

    Article  Google Scholar 

  • De Waal FB (1991) Complementary methods and convergent evidence in the study of primate social cognition. Behaviour 118:297–320

    Article  Google Scholar 

  • Dejerine JJ, Dejerine-Klumpke A (1895) Anatomie des centres nerveux, vol 1. Rueff, Paris

    Google Scholar 

  • Dejerine JJ, Dejerine-Klumpke A (1901) Anatomie des centres nerveux, vol 2. Rueff, Paris

    Google Scholar 

  • Devlin JT, Jamison HL, Gonnerman LM, Matthews PM (2006) The role of the posterior fusiform gyrus in reading. J Cogn Neurosci 18:911–922

    Article  Google Scholar 

  • DeWitt-Hamer PC, Moritz-Gasser S, Gatignol P, Duffau H (2011) Is the human left middle longitudinal fascicle essential for language? A brain electrostimulation study. Hum Brain Mapp 32:962–973

    Article  Google Scholar 

  • Dick AS, Tremblay P (2012) Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain 135:3529–3550

    Article  Google Scholar 

  • Dietz NAE, Jones KM, Gareau L, Zeffiro TA, Eden GF (2005) Phonological decoding involves left posterior fusiform gyrus. Hum Brain Mapp 26:81–93

    Article  Google Scholar 

  • Dolan RJ, Lane R, Chua P, Fletcher P (2000) Dissociable temporal lobe activations during emotional memory retrieval. NeuroImage 11:203–209

    Article  Google Scholar 

  • Dronkers NF, Wilkins DP, Van Valin RD Jr, Redfern BB, Jaeger JJ (2004) Lesion analysis of the brain areas involved in language comprehension. Cognition 92:145–177

    Article  Google Scholar 

  • Duffau H (2008) The anato-functional connectivity of language revisited: new insights provided by electrostimulation and tractography. Neuropsychologia 46:927–934

    Article  Google Scholar 

  • Epelbaum S, Pinel P, Gaillard R, Delmaire C, Perrin M, Dupont S, Dehaene S, Cohen L (2008) Pure alexia as a disconnection syndrome: new diffusion imaging evidence for an old concept. Cortex 44:962–974

    Article  Google Scholar 

  • Epstein R, Kanwisher N (1999) Repetition blindness for locations: evidence for automatic spatial coding in an RSVP task. J Exp Psychol Hum Percept Perform 25:1855

    Article  Google Scholar 

  • Eskenazi B, Cain WS, Novelly RA, Mattson R (1986) Odor perception in temporal lobe epilepsy patients with and without temporal lobectomy. Neuropsychologia 24:553–562

    Article  Google Scholar 

  • Falk D, Redmond JC Jr, Guyer J, Conroy C, Recheis W, Weber GW, Seidler H (2000) J Hum Evol 38:695–717

    Article  Google Scholar 

  • ffytche DH (2008) The hodology of hallucinations. Cortex 44:1067–1083

    Article  Google Scholar 

  • ffytche DH, Blom JD, Catani M (2010) Neuropsychiatry review series: disorders of visual perception. J Neurol Neurosurg Psychiatry 81:1280–1287

    Article  Google Scholar 

  • Fiez JA, Raichle ME, Balota DA, Tallal P, Petersen SE (1996) PET activation of posterior temporal regions during auditory word presentation and verb generation. Cereb Cortex 6:1–10

    Article  Google Scholar 

  • Fischl B, Sereno M, Dale A (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207

    Article  Google Scholar 

  • Fjell AM, Westlye LT, Amlien I, Tamnes CK, Grydeland H, Engvig A, Espeseth T, Reinvang I, Lundervold AJ, Lundervold A, Walhovd KB (2015) High-expanding cortical regions in human development and evolution are related to higher intellectual abilities. Cereb Cortex 25:26–34

    Article  Google Scholar 

  • Flechsig PE (1896) Die Localisation der geistigen Vorgänge insbesondere der Sinnesempfindungen des Menschen: Vortrag, gehalten auf der 68. Versammlung Deutscher Naturforscher und Ärtze. Veit, Frankfurt

    Google Scholar 

  • Flechsig PE (1901) Developmental (myelogenetic) localization of the cerebral cortex in the human subject. Lancet 1898:1027–1029

    Article  Google Scholar 

  • Fox CJ, Iaria G, Barton JJS (2008) Disconnection in prosopagnosia and face processing. Cortex 44:996–1009

    Article  Google Scholar 

  • Frey S, Campbell JSW, Pike GB, Petrides M (2008) Dissociating the human language pathways with high angular resolution diffusion fiber tractography. J Neurosci 28:11435–11444

    Article  Google Scholar 

  • Friederici AD (2009) Pathways to language: fiber tracts in the human brain. Trends Cogn Sci 13(4):175–181

    Article  Google Scholar 

  • Frith CD (2007) The social brain? Phil Trans R Soc Lond B 362:671–678

    Article  Google Scholar 

  • Gallagher HL, Frith CD (2003) Functional imaging of ‘theory of mind’. Trends Cogn Sci 7:77–83

    Article  Google Scholar 

  • Gannon PJ, Holloway RL, Broadfield DC, Braun AR (1998) Asymmetry of chimpanzee planum temporale: humanlike pattern of Wernicke’s brain language area homolog. Science 279(5348):220–222

    Article  Google Scholar 

  • Gardner RA, Gardner BT (1969) Teaching sign language to a chimpanzee. Science 165:664–672

    Article  Google Scholar 

  • Gardner BT, Gardner RA (1975) Evidence for sentence constituents in the early utterances of child and chimpanzee. J Exp Biol 104:244–267

    Google Scholar 

  • Gardner RA, Gardner BT (1980) Comparative psychology and language acquisition. In: Sebeok T, Umiker-Sebeok J (eds) Speaking of apes – topics in contemporary semiotics. Springer, Boston MA

    Google Scholar 

  • Gauthier I, Tarr MJ, Anderson AW, Skudlarski P, Gore JC (1999) Activation of the middle fusiform ‘face area’ increases with expertise in recognizing novel objects. Nat Neurosci 2:569–573

    Article  Google Scholar 

  • Geschwind N (1965) Disconnection syndromes in animals and man, part 1. Brain 88:237–294

    Article  Google Scholar 

  • Geschwind N (1970) The organization of language and brain. Science 170:940–944

    Article  Google Scholar 

  • Glasser MF, Rilling JK (2008) DTI tractography of the human brain’s language pathways. Cereb Cortex 18:2471–2482

    Article  Google Scholar 

  • Glasser MF, Van Essen DC (2011) Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci 31:11597–11616

    Article  Google Scholar 

  • Glasser M, Preuss T, Snyder L, Nair G, Rilling J, Zhang X, Li L, Van Essen D (2011) comparative mapping of cortical myelin content in humans, chimpanzees, and macaques using T1-weighted and T2-weighted MRI. Society for Neuroscience, Washington, DC

    Google Scholar 

  • Glasser MF, Goyal MS, Preuss TM, Raichle ME, Van Essen DC (2014) Trends and properties of human cerebral cortex: correlations with cortical myelin content. NeuroImage 93:165–175

    Article  Google Scholar 

  • Goel V, Grafman J, Sadato N, Hallett M (1995) Modeling other minds. Neuroreport 6:1741–1746

    Article  Google Scholar 

  • Goldman-Rakic PS, Selemon LD, Schwartz ML (1984) Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12:719–743

    Article  Google Scholar 

  • Gorno-Tempini ML, Price CJ, Josephs O, Vandeberghe R, Cappa SF, Kapur N, Frackowiak RSJ (1998) The neural systems sustaining face and proper name processing. Brain 121:2103–2118

    Article  Google Scholar 

  • Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19:72–78

    Article  Google Scholar 

  • Grezes J, Frith C, Passingham RE (2004) Brain mechanisms for inferring deceit in the actions of others. J Neurosci 24:5500–5505

    Article  Google Scholar 

  • Gurche JA (1982) Early primate brain evolution. In: Armstrong E, Falk D (eds) Primate brain evolution. Springer, New York, pp 227–246

    Chapter  Google Scholar 

  • Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441:197–222

    Article  Google Scholar 

  • Halwani GF, Loui P, Rueber T, Schlaug G (2011) Effects of practice and experience on the arcuate fasciculus: comparing singers, instrumentalists, and non-musicians. Front Psychol 2:156

    Article  Google Scholar 

  • Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC (2002) Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp 15:247–262

    Article  Google Scholar 

  • Hare B, Call J, Tomasello M (2001) Do chimpanzees know what conspecifics know? Anim Behav 61:139–151

    Article  Google Scholar 

  • Hecht EE, Gutman DA, Dunn W, Keifer OP Jr, Sakai S, Kent M, Preuss T (2016) Neuroanatomical variation in domestic dog breeds. Program No. 834.13/III15. Society for Neuroscience, San Diego

    Google Scholar 

  • Heekeren HR, Wartenburger I, Schmidt H, Schwintowski HP, Villringer A (2003) An fMRI study of simple ethical decision-making. Neuroreport 14:1215–1219

    Article  Google Scholar 

  • Hickok G, Poeppel D (2004) Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92:67–99

    Article  Google Scholar 

  • Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8:393–402

    Article  Google Scholar 

  • Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D (2010) Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci 107:13135–13140

    Article  Google Scholar 

  • Hillger LA, Koenig O (1991) Separable mechanisms in face processing: evidence from hemispheric specialization. J Cogn Neurosci 3:42–58

    Article  Google Scholar 

  • Hof PR, Van Der Gucht E (2007) Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anat Rec 290:1–31

    Article  Google Scholar 

  • Holloway RL, De La Costelareymondie MC (1982) Brain endocast asymmetry in pongids and hominids: some preliminary findings on the paleontology of cerebral dominance. Am J Phys Anthropol 58:101–110

    Article  Google Scholar 

  • Hopkins WD, Taglialatela JP, Nir T, Schenker NM, Sherwood CC (2010) A voxel-based morphometry analysis of white matter asymmetries in chimpanzees (Pan troglodytes). Brain Behav Evol 76:93–100

    Article  Google Scholar 

  • Insausti R (2013) Comparative neuroanatomical parcellation of the human and nonhuman primate temporal pole. J Comp Neurol 521:4163–4176

    Article  Google Scholar 

  • Kaas JH (2006) Evolution of the neocortex. Curr Biol 16:910–914

    Article  Google Scholar 

  • Kaas JH, Hackett TA (1999) ‘What’ and ‘where’ processing in auditory cortex. Nat Neurosci 2:1045–1047

    Article  Google Scholar 

  • Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311

    Google Scholar 

  • Kanwisher N, Stanley D, Harris A (1999) The fusiform face area is selective for faces not animals. Neuroreport 10:183–187

    Article  Google Scholar 

  • Karg K, Schmelz M, Call J, Tomasello M (2016) Differing views: can chimpanzees do level 2 perspective-taking? Anim Cogn 19:555–564

    Article  Google Scholar 

  • Kier EL, Staib LH, Davis LM, Bronen RA (2004) MR imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipitofrontal fasciculus, and Meyer’s loop of the optic radiation. Am J Neuroradiol 25:677–691

    Google Scholar 

  • Krachun C, Call J, Tomasello M (2010) A new change-of-contents false belief test: children and chimpanzees compared. Int J Comp Psychol 23:145–165

    Google Scholar 

  • Kriegeskorte N, Formisano E, Sorger B, Goebel R (2007) Individual faces elicit distinct response patterns in human anterior temporal cortex. PNAS 104:20600–20605

    Article  Google Scholar 

  • Lambon Ralph MA, Patterson K (2008) Generalization and differentiation in semantic memory: insights from semantic dementia. Ann N Y Acad Sci 1124:61–76

    Article  Google Scholar 

  • Lambon Ralph MA, Sage K, Jones RW, Mayberry EJ (2010) Coherent concepts are computed in the anterior temporal lobes. PNAS 107:2717–2722

    Article  Google Scholar 

  • Leveroni CL, Seidenberg M, Mayer AR, Mead LA, Binder JR, Rao SM (2000) Neural systems underlying the recognition of familiar and newly learned faces. J Neurosci 20:878–886

    Google Scholar 

  • Li L, Hu X, Preuss TM, Glasser MF, Damen FW, Qiu Y, Rilling J (2013) Mapping putative hubs in human, chimpanzee and rhesus macaque connectomes via tractography. NeuroImage 80:462–474

    Article  Google Scholar 

  • Lieberman DE (2000) Ontogeny, homology and phylogeny in the hominid craniofacial skeleton: the problem of the brow ridge. In: O’Higgins P, Cohn M (eds) Development, growth, and evolution. Linnean Society Symposium Series 20. pp 85–122

    Google Scholar 

  • Lieberman DE, McBratney BM, Krovitz G (2002) The evolution and development of cranial form in Homo sapiens. Proc Natl Acad Sci 99:1134–1139

    Article  Google Scholar 

  • Lyras GA (2009) The evolution of the brain in Canidae (Mammalia: Carnivora). Scripta Geol 139:1–93

    Google Scholar 

  • Makris N, Pandya DN (2009) The extreme capsule in humans and rethinking of the language circuitry. Brain Struct Funct 213:343–358

    Article  Google Scholar 

  • Makris N, Papadimitriou GM, Kaiser JR, Sorg S, Kennedy DN, Pandya DN (2009) Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 19:777–785

    Article  Google Scholar 

  • Marchina S, Zhu LL, Norton A, Zipse L, Wan CY, Schlaug G (2011) Impairment of speech production predicted by lesion load of the left arcuate fasciculus. Stroke 42:2251–2256

    Article  Google Scholar 

  • Marino L (2002) Convergence of complex cognitive abilities in cetaceans and primates. Brain Behav Evol 59:21–32

    Article  Google Scholar 

  • Mars RB, Sallet J, Neubert FX, Rushworth MFS (2013) Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex. Proc Natl Acad Sci USA 110:10806–10811

    Article  Google Scholar 

  • Martin A, Chao LL (2001) Semantic memory and the brain: structure and processes. Curr Opin Neurobiol 11:194–201

    Article  Google Scholar 

  • Martin A, Haxby JV, Lalonde FM, Wiggs CL, Ungerleider LG (1995) Discrete cortical regions associated with knowledge of color and knowledge of action. Science 270:102–105

    Article  Google Scholar 

  • Martin A, Wiggs CL, Ungerleider LG, Haxby JV (1996) Neural correlates of category-specific knowledge. Nature 379:649–652

    Article  Google Scholar 

  • Matsuzawa T (1996) Chimpanzee intelligence in nature and in captivity: isomorphism of symbol use and tool use. In: Marchant LF, Nishida T (eds) Great ape societies. Cambridge University Press, Cambridge

    Google Scholar 

  • McCandliss BD, Cohen L, Dehaene S (2003) The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn Sci 7:293–299

    Article  Google Scholar 

  • McCarthy G, Puce A, Gore JC, Allison T (1997) Face-specific processing in the human fusiform gyrus. J Cogn Neurosci 9:605–610

    Article  Google Scholar 

  • Menjot de Champfleur N (2012) La voie ventrale sémantique du langage: une étude de connectivité anatomique, de connectivité fonctionnelle et de sa plasticité périopératoire. Unpublished dissertation, Montpellier 1

    Google Scholar 

  • Menjot de Champfleur NM, Maldonado IL, Moritz-Gasser S, Machi P, Le Bars E, Bonafé A, Duffau H (2013) Middle longitudinal fasciculus delineation within language pathways: a diffusion tensor imaging study in human. Eur J Radiol 82:151–157

    Article  Google Scholar 

  • Mesulam M, Mufson EJ (1982) Insula of the old world monkey. I: architectonics in the insulo-orbito-temporal component of the paralimbic brain. J Comp Neurol 212:1–22

    Article  Google Scholar 

  • Moll J, Eslinger PJ, de Oliveira-Souza R (2001) Frontopolar and anterior temporal cortex activation in a moral judgement task: preliminary functional MRI results in normal subjects. Arq Neuropsiquiatr 59:657–664

    Article  Google Scholar 

  • Moll J, de Oliveira-Souza R, Eslinger PJ, Bramati IE, Grafman J (2002) Functional networks in emotional moral and nonmoral social judgments. NeuroImage 16:696–703

    Article  Google Scholar 

  • Morgane PJ, Jacobs MS, McFarland WL (1980) The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Surface configurations of the telencephalon of the bottlenose dolphin with comparative anatomical observations in four other cetacean species. Brain Res Bull 5:1–107

    Article  Google Scholar 

  • Morosan P, Schleicher A, Amunts K, Zilles K (2005) Multimodal architectonic mapping of human superior temporal gyrus. Anat Embryol 210:401–406

    Article  Google Scholar 

  • Mummery CJ, Patterson K, Hodges JR, Price CJ (1998) Functional neuroanatomy of the semantic system: divisible by what? J Cogn Neurosci 10:766–777

    Article  Google Scholar 

  • Nasr S, Liu N, Devaney KJ, Yue X, Rajimehr R, Ungerleider LG, Tootell RB (2011) Scene-selective cortical regions in human and non-human primates. J Neurosci 31:13771–13785

    Article  Google Scholar 

  • Niessl-Mayendorf V (1903) Vom fasciculus longitudinalis inferior. Eur Arch Psychiatry Clin Neurosci 37:537–563

    Google Scholar 

  • Nucifora PGP, Verma R, Melhem ER, Gur RE, Gur RC (2005) Leftward asymmetry in relative fiber density in the arcuate fasciculus. Neuroreport 16:791–794

    Article  Google Scholar 

  • Olson IR, Plotzker A, Exxyat Y (2007) The enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130:1718–1731

    Article  Google Scholar 

  • Olson IR, McCoy D, Klobusicky E, Ross LA (2012) Social cognition and the anterior temporal lobes: a review and theoretical framework. Soc Cogn Affect Neurosci 10:123–133

    Google Scholar 

  • Orban GA, Van Essen D, Vanduffel W (2004) Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn Sci 8:315–324

    Article  Google Scholar 

  • Pammer K, Hansen PC, Kringelback ML, Holliday I, Barnes G, Hillebrand A, Singh KD, Cornelissen PL (2004) Visual word recognition: the first half second. NeuroImage 22:1819–1825

    Article  Google Scholar 

  • Parker GJM, Luzzi S, Alexander DC, Wheeler-Kingshott CA, Ciccarelli O, Ralph MAL (2005) Lateralization of ventral and dorsal auditory-language pathways in the human brain. NeuroImage 24:656–666

    Article  Google Scholar 

  • Parr LA, Dove T, Hopkins WD (1998) Why faces may be special: evidence of the inversion effect in chimpanzees. J Cogn Neurosci 10:615–622

    Article  Google Scholar 

  • Parr LA, Heintz M, Akamagwuna U (2006) Three studies on configural face processing by chimpanzees. Brain Cogn 62:30–42

    Article  Google Scholar 

  • Parr LA, Heintz M, Pradhan G (2008) Rhesus monkeys (Macaca mulatta) lack expertise in face processing. J Comp Psychol 122:390–402

    Article  Google Scholar 

  • Parr LA, Hecht E, Barks SK, Preuss SK, Preuss TM, Votaw JR (2009) Face processing in the chimpanzee brain. Curr Biol 19:50–53

    Article  Google Scholar 

  • Passingham RE, Smaers JB (2014) Is the prefrontal cortex especially enlarged in the human brain allometric relations and remapping factors. Brain Behav Evol 84:156–166

    Article  Google Scholar 

  • Peelen MV, Downing PE (2005) Cortical representation of faces, bodies and their parts. J Vis 5:825–825

    Article  Google Scholar 

  • Penn DC, Povinelli DJ (2007) On the lack of evidence that non-human animals possess anything remotely resembling a ‘theory of mind’. Philos Trans R Soc Lond Ser B Biol Sci 362:731–744

    Article  Google Scholar 

  • Perrett DI, Hietanen JK, Oram MW, Benson PJ (1992) Organization and functions of cells responsive to faces in the temporal cortex. Philos Trans R Soc Lond Ser B Biol Sci 335:23–30

    Article  Google Scholar 

  • Petrides M, Pandya DN (2007) Efferent association pathways from the rostral prefrontal cortex in the macaque monkey. J Neurosci 27:11573–11586

    Article  Google Scholar 

  • Pizzagalli DA, Lehmann D, Hendrick AM, Regard M, Pascual-Marqui RD, Davidson RJ (2002) Affective judgments of faces modulate early activity (~160 ms) within the fusiform gyri. NeuroImage 16:663–677

    Article  Google Scholar 

  • Pobric G, Jefferies E, Ralph MA (2007) Anterior temporal lobes mediate semantic representation: mimicking semantic dementia by using rTMS in normal participants. PNAS 104:20137–20141

    Article  Google Scholar 

  • Pobric G, Jefferies E, Ralph MA (2010) Amodal semantic representations depend on both anterior temporal lobes: evidence from transcranial magnetic stimulation. Neuropsychologia 48:1336–1342

    Article  Google Scholar 

  • Polk TA, Farah MJ (2002) Functional MRI evidence for an abstract, not perceptual, word-form area. J Exp Psychol Gen 131:65–72

    Article  Google Scholar 

  • Povinelli DJ, Preuss TM (1995) Theory of mind: evolutionary history of a cognitive specialization. Trends Neurosci 18:418–424

    Article  Google Scholar 

  • Powell HR, Parker GJ, Alexander DC, Symms MR, Boulby PA, Wheeler-Kingshott CA, Barker GJ, Noppeney U, Koepp MJ, Duncan JS (2006) Hemispheric asymmetries in language-related pathways: a combined functional MRI and tractography study. NeuroImage 32:388–399

    Article  Google Scholar 

  • Preuss TM (1993) The role of the neurosciences in primate evolutionary biology: historical commentary and prospectus. In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Springer, New York, pp 333–362

    Google Scholar 

  • Preuss TM (2007) Primate brain evolution in phylogenetic context. In: Kaas JH, Preuss TM (eds) Evolution of nervous systems, Primates, vol 4. Elsevier, Oxford, pp 1–34

    Google Scholar 

  • Preuss TM (2010) Reinventing primate neuroscience for the twenty-first century. Primate Neuroethol 1:422–454

    Article  Google Scholar 

  • Preuss TM (2011) The human brain: rewired and running hot. Annu NY Acad Sci 1225(Suppl 1):182–191

    Article  Google Scholar 

  • Radinsky L (1974) The fossil evidence of anthropoid brain evolution. Am J Phys Anthropol 41:15–27

    Article  Google Scholar 

  • Radinsky LB (1979) The fossil record of primate brain evolution. American Museum of Natural History, New York, pp 1–27

    Google Scholar 

  • Ramayya AG, Glasser MF, Rilling JK (2010) A DTI investigation of neural substrates supporting tool use. Cereb Cortex 20:507–516

    Article  Google Scholar 

  • Rausch R, Serafetinides EA, Crandall PH (1977) Olfactory memory in patients with anterior temporal lobectomy. Cortex 13:445–452

    Article  Google Scholar 

  • Reiman EM, Lane RD, Ahern GL, Schwartz GE, Davidson RJ, Friston KJ, Yun LS, Chen K (1997) Neuroanatomical correlates of externally and internally generated human emotion. Am J Psychiatry 154:918–925

    Article  Google Scholar 

  • Rhodes G (1993) Configural coding, expertise, and right hemisphere advantage for face recognition. Brain Cogn 22:19–41

    Article  Google Scholar 

  • Rilling JK (2006) Human and non-human primate brains: are they allometrically scaled versions of the same design? Evol Anthropol 15:65–77

    Article  Google Scholar 

  • Rilling JK, Seligman RA (2002) A quantitative morphometric comparative analysis of the primate temporal lobe. J Hum Evol 42:505–533

    Article  Google Scholar 

  • Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T, Hu X, Behrens TEJ (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:426–428

    Article  Google Scholar 

  • Rilling JK, Glasser MF, Jbabdi S, Andersson J, Preuss TM (2011) Continuity, divergence, and the evolution of brain language pathways. Front Evol Neurosci 3:11

    Google Scholar 

  • Rivas E (2005) Recent use of signs by chimpanzees (Pan troglodytes) in interactions with humans. J Comp Psychol 119:404–417

    Article  Google Scholar 

  • Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20

    Article  Google Scholar 

  • Rogers TT, Lambon Ralph MA, Garrard P, Bozeat S, McClelland JL, Hodges JR (2004) Structure and deterioration of semantic memory: a neuropsychological and computational investigation. Psychol Rev 111:205–235

    Article  Google Scholar 

  • Romanski LM, Tian B, Fritz JB, Mishkin M, Goldman-Rakic PS, Rauschecker JP (1999) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 2:1131–1136

    Article  Google Scholar 

  • Ross LA, Olson IR (2010) Social cognition and the anterior temporal lobes. NeuroImage 49:3452–3462

    Article  Google Scholar 

  • Rossion B, Dricot L, Devolder A, Bodart JM, Crommelinck M, De Gelder B, Zoontjes R (2000) Hemispheric asymmetries for whole-based and part-based face processing in the human fusiform gyrus. J Cogn Neurosci 12:793–802

    Article  Google Scholar 

  • Roxbury T, McMahon K, Copland DA (2014) An fMRI study of concreteness effects in spoken word recognition. Behav Brain Funct 10:34

    Article  Google Scholar 

  • Rudrauf D, Mehta S, Grabowski TJ (2008) Disconnection’s renaissance takes shape: formal incorporation in group-level lesion studies. Cortex 44:1084–1096

    Article  Google Scholar 

  • Sachs H (1892) Das Hemisphärenmark des menschlichen Grosshirns. Der Hinterhauptlappen. Breslau Universität psychiatrische und Nervenklinik. Arbeiten. Thieme, Leipzig

    Google Scholar 

  • Saur D, Kreher BW, Schnell S, Kümmerer D, Kellmeyer P, Vry MS, Umarova R, Musso M, Glauche V, Abel S, Huber W (2008) Ventral and dorsal pathways for language. Proc Natl Acad Sci 105:18035–18040

    Article  Google Scholar 

  • Savage-Rumbaugh ES, Wilkerson BJ, Bakeman R (1977) Spontaneous gestural communication among conspecifics in the pygmy chimpanzee (Pan paniscus). In: Bourne G (ed) Progress in ape research. Elsevier, Amsterdam, pp 97–116

    Google Scholar 

  • Savage-Rumbaugh ES, Sevcik RA, Rumbaugh DM, Rubert E (1985) The capacity of animals to acquire language: do species differences have anything to say to us? Phil Trans R Soc B Biol Sci 308:177–185

    Article  Google Scholar 

  • Sawyer EK, Turner EC, Kaas JH (2016) Somatosensory brainstem, thalamus, and cortex of the California sea lion (Zalophus californianus). J Comp Neurol 524:1957–1975

    Article  Google Scholar 

  • Saxe R, Kanwisher N (2003) People thinking about thinking people: the role of the temporo-parietal junction in “theory of mind”. NeuroImage 19:1835–1842

    Article  Google Scholar 

  • Saygin ZM, Osher DE, Koldewyn K, Reynolds G, Gabrieli JDE, Saxe RR (2012) Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat Neurosci 15:321–327

    Article  Google Scholar 

  • Schmahmann JD, Pandya DN (2007) The complex history of the fronto-occipital fasciculus. J Hist Neurosci 16(4):362–377

    Article  Google Scholar 

  • Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ, Wedeen VJ (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653

    Article  Google Scholar 

  • Schmolck H, Squire LR (2001) Impaired perception of facial emotions following bilateral damage to the anterior temporal lobe. Neuropsychology 15:30–38

    Article  Google Scholar 

  • Schoenemann PT (1997) An MRI study of the relationship between human neuroanatomy and behavioral ability. Unpublished dissertation. University of California, Berkeley

    Google Scholar 

  • Schwartz MF, Kimberg DY, Walker GM, Faseyitan O, Brecher A, Dell GS, Coslett HB (2009) Anterior temporal involvement in semantic word retrieval: voxel-based lesion-symptom mapping evidence from aphasia. Brain 132:3411–3427

    Article  Google Scholar 

  • Schwarzlose RF, Baker CI, Kanwisher N (2005) Separate face and body selectivity on the fusiform gyrus. J Neurosci 25:11055–11059

    Article  Google Scholar 

  • Seltzer B, Pandya DN (1984) Further observations on parieto-temporal connections in the rhesus monkey. Exp Brain Res 55:301–312

    Article  Google Scholar 

  • Semendeferi K, Damasio H (2000) The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. J Hum Evol 38:317–332

    Article  Google Scholar 

  • Shaw P, Lawrence E, Bramham J, Brierley B, Radbourne C, David AS (2007) A prospective study of the effects of anterior temporal lobectomy on emotion recognition and theory of mind. Neuropsychologia 45:2783–2790

    Article  Google Scholar 

  • Simmons W, Martin A (2009) The anterior temporal lobes and the functional architecture of semantic memory. J Int Neuropsychol Soc 15:645–649

    Article  Google Scholar 

  • Simmons WK, Reddish M, Bellgowan PSF, Martin A (2009) The selectivity and functional connectivity of the anterior temporal lobes. Cereb Cortex 25:813–825

    Google Scholar 

  • Small DM, Jones-Gotman M, Zatorre RJ, Petrides M, Evans AC (1997) A role for the right anterior temporal lobe in taste quality recognition. J Neurosci 17:5136–5142

    Google Scholar 

  • Starrfelt R, Gerlach C (2007) The visual what for area: words and pictures in the left fusiform gyrus. NeuroImage 35:334–342

    Article  Google Scholar 

  • Steiper ME, Seiffert ER (2012) Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution. Proc Natl Acad Sci 109:6006–6011

    Article  Google Scholar 

  • Terrace HS, Petitto LA, Sanders RJ, Bever TG (1979) Can an ape create a sentence? Science 206:891–902

    Article  Google Scholar 

  • Thiebaut de Schotten MT, Dell’Acqua F, Valabregue R, Catani M (2012) Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48(1):82–96

    Article  Google Scholar 

  • Turken U, Dronkers NF (2011) The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front Syst Neurosci 5:1–20

    Article  Google Scholar 

  • Tusa RJ, Ungerleider LG (1985) The inferior longitudinal fasciculus: a reexamination in humans and monkeys. Ann Neurol 18:583–591

    Article  Google Scholar 

  • Ueno T, Saito S, Rogers TT, Lambon Ralph MA (2011) Lichtheim synthesizing aphasia and the neural basis of language in a neurocomputational model of the dual dorsal-ventral language pathways. Neuron 72:385–396

    Article  Google Scholar 

  • Ungerleider LG, Desimone R (1986) Cortical connections of visual area MT in the macaque. J Comp Neurol 248:190–222

    Article  Google Scholar 

  • van den Heuvel MP, Sporns O (2013) Network hubs in the human brain. Trends Cogn Sci 17:683–696

    Article  Google Scholar 

  • Vandenberghe R, Price C, Wise R, Josephs O, Frackowiak RSJ (1996) Functional anatomy of a common semantic system for words and pictures. Nature 383:254–256

    Article  Google Scholar 

  • Visser M, Jefferies E, Ralph ML (2010) Semantic processing in the anterior temporal lobes: a meta-analysis of the functional neuroimaging literature. J Cogn Neurosci 22:1083–1094

    Article  Google Scholar 

  • Visser M, Jefferies E, Embleton KV, Lambon Ralph MA (2012) Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobes. J Cogn Neurosci 24:1766–1778

    Article  Google Scholar 

  • von Bonin G, Bailey P (1947) The neocortex of Macaca mulatta. University of Illinois Press, Urbana

    Google Scholar 

  • Von Economo C, Koskinas GN (1925) Die cytoarchitektonik der hirnrinde des erwachsenen menschen. J. Springer, Wien

    Google Scholar 

  • Wallman J (1992) Aping language. Cambridge University Press, New York

    Book  Google Scholar 

  • Watson JD, Myers R, Frackowiak RS, Hajnal JV, Woods RP, Mazziotta JC, Shipp S, Zeki S (1993) Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb Cortex 3:79–94

    Article  Google Scholar 

  • Weiller C, Bormann T, Saur D, Musso M, Rijntjes M (2011) How the ventral pathway got lost – and what its recovery might mean. Brain Lang 118:29–39

    Article  Google Scholar 

  • Weiner KS, Zilles K (2015) The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia 83:48–62

    Article  Google Scholar 

  • Whiten A, Custance DM, Gomez JC, Teixidor P, Bard KA (1996) Imitative learning of artificial fruit processing in children (Homo sapiens) and chimpanzees (Pan troglodytes). J Comp Psychol 110:3–14

    Article  Google Scholar 

  • Wilson MA, Joubert S, Ferre P, Belleville S, ANsaldo AI, Joanette Y, Rouleau I, Brambati SM (2012) The role of the left anterior temporal lobe in exception word reading: reconciling patient and neuroimaging findings. NeuroImage 60:2000–2007

    Article  Google Scholar 

  • Wise R, Chollet F, Hadar U, Friston K, Hoffner E, Frackowiak R (1991) Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain 114:1803–1817

    Article  Google Scholar 

  • Wong FCK, Chandrasekaran B, Garibaldi K, Wong PCM (2011) White matter anisotropy in the ventral language pathway predicts sound-to-word learning success. J Neurosci 31:8780–8785

    Article  Google Scholar 

  • Yeatman JD, Dougherty RF, Rykhlevskaia E, Sherbondy AJ, Deutsch GK, Wandell BA, Ben-Shachar M (2011) Anatomical properties of the arcuate fasciculus predict phonological and reading skills and children. J Cogn Neurosci 23:3304–3317

    Article  Google Scholar 

  • Zahn R, Moll J, Krueger F, Huey ED, Garrido G, Grafman J (2007) Social concepts are represented in the superior anterior temporal cortex. PNAS 104:6430–6435

    Article  Google Scholar 

  • Zahn R, Moll J, Iyengar V, Huey ED, Tierney M, Krueger F, Grafman J (2009) Social conceptual impairments in frontotemporal lobar degeneration with right anterior temporal hypometabolism. Brain 132:604–616

    Article  Google Scholar 

  • Zilles K, Schlaug G, Matelli M, Luppino G, Schleicher A, Qu M, Dabringhaus A, Seitz R, Roland PE (1995) Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. J Anat 187:515–537

    Google Scholar 

  • Zilles K, Bacha-Trams M, Palomero-Gallagher N, Amunts K, Friederici AD (2015) Common molecular basis of sentence comprehension network revealed by neurotransmitter receptor fingerprints. Cortex 63:79–89

    Article  Google Scholar 

Download references

Acknowledgments

Brain images in Fig. 16.1 were adapted from the University of Wisconsin and Michigan State Comparative Mammalian Brain Collections and the National Museum of Health and Medicine, on their website neurosciencelibrary.org, funded by NSF and NIH.

Figures 16.2 and 16.3 used data provided in part by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research and by the McDonnell Center for Systems Neuroscience at Washington University.

The authors would like to acknowledge the John Templeton Foundation (Award 40463) and the NIH Office of Infrastructure Programs (OD P51OD11132) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd M. Preuss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK

About this chapter

Cite this chapter

Bryant, K.L., Preuss, T.M. (2018). A Comparative Perspective on the Human Temporal Lobe. In: Bruner, E., Ogihara, N., Tanabe, H. (eds) Digital Endocasts. Replacement of Neanderthals by Modern Humans Series. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56582-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56582-6_16

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56580-2

  • Online ISBN: 978-4-431-56582-6

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics