Skip to main content

Regulation of Skeletal Myoblast Differentiation by Drebrin

  • Chapter
  • First Online:
Drebrin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1006))

Abstract

Myoblast differentiation is a complex process. As myoblasts differentiate into myofibers, they acquire a cell type-specific transcriptional program, irreversibly exit the cell cycle, and dramatically change their morphology. The morphological changes include cell elongation, alignment, and fusion into syncytial myofibers. Several lines of evidence suggest that these events may be co-regulated. However, the mechanisms that coordinate major alterations in a cell’s transcriptome and its shape are not well understood. Muscle-specific transcription is controlled by proteins of the MyoD family, transcription factors whose activity is regulated by specific signal transduction pathways, including the p38 MAP kinase pathway. In a search for genes that might play a role in linking myogenic signal transduction, cytoskeletal regulation, and myoblast differentiation, Dbn1 (encoding the actin regulator drebrin) was identified. Dbn1 expression is induced during myoblast differentiation, in a p38 MAP kinase- and MyoD- dependent manner. RNAi-mediated depletion of drebrin, or treatment with a chemical drebrin inhibitor, resulted in a similar phenotype in myoblasts: defective differentiation, with low levels of early and late differentiation markers and inefficient production of myofibers. Drebrin localizes at sites of cell-cell contact and cell extensions, locations that are also enriched for F-actin. Drebrin may be important in linking transcriptional and morphological aspects of myoblast differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramovici H, Gee SH (2007) Morphological changes and spatial regulation of diacylglycerol kinase-zeta, syntrophins, and Rac1 during myoblast fusion. Cell Motil Cytoskeleton 64:549–567

    Article  CAS  PubMed  Google Scholar 

  • de Angelis L, Zhao J, Andreucci JJ, Olson EN, Cossu G, McDermott JC (2005) Regulation of vertebrate myotome development by the p38 MAP kinase-MEF2 signaling pathway. Dev Biol 283:171–179

    Article  PubMed  Google Scholar 

  • Bae GU, Gaio U, Yang YJ, Lee HJ, Kang JS, Krauss RS (2008) Regulation of myoblast motility and fusion by the CXCR4-associated sialomucin, CD164. J Biol Chem 283:8301–8309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergstrom DA, Penn BH, Strand A, Perry RL, Rudnicki MA, Tapscott SJ (2002) Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol Cell 9:587–600

    Article  CAS  PubMed  Google Scholar 

  • Biressi S, Molinaro M, Cossu G (2007) Cellular heterogeneity during vertebrate skeletal muscle development. Dev Biol 308:281–293

    Article  CAS  PubMed  Google Scholar 

  • Briata P, Forcales SV, Ponassi M, Corte G, Chen CY, Karin M, Puri PL, Gherzi R (2005) p38-dependent phosphorylation of the mRNA decay-promoting factor KSRP controls the stability of select myogenic transcripts. Mol Cell 20:891–903

    Article  CAS  PubMed  Google Scholar 

  • Butkevich E, Bodensiek K, Fakhri N, von Roden K, Schaap IAT, Majoul I, Schmidt CF, Klopfenstein DR (2015) Drebrin-like protein DBN-1 is a sarcomere component that stabilizes actin filaments during muscle contraction. Nat Commun 6:7523. doi:10.1038/ncomms8523

    Article  PubMed  Google Scholar 

  • Chang NC, Rudnicki MA (2014) Satellite cells: the architects of skeletal muscle. Curr Top Dev Biol 107:161–181

    Article  CAS  PubMed  Google Scholar 

  • Chang W, Webster DR, Salam AA, Gruber D, Prasad A, Eiserich JP, Bulinski JC (2002) Alteration of the C-terminal amino acid of tubulin specifically inhibits myogenic differentiation. J Biol Chem 277:30690–30698

    Article  CAS  PubMed  Google Scholar 

  • Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  CAS  PubMed  Google Scholar 

  • Chen EH, Grote E, Mohler W, Vignery A (2007a) Cell-cell fusion. FEBS Lett 581:2181–2193

    Article  CAS  PubMed  Google Scholar 

  • Chen SE, Jin B, Li YP (2007b) TNF-α regulates myogenesis and muscle regeneration by activating p38 MAPK. Am J Phys Cell Physiol 292:C1660–C1671

    Article  CAS  Google Scholar 

  • Conti FJ, Monkley SJ, Wood MR, Critchley DR, Müller U (2009) Talin 1 and 2 are required for myoblast fusion, sarcomere assembly and the maintenance of myotendinous junctions. Development 136:3597–3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuenda A, Cohen P (1999) Stress-activated protein kinase-2/p38 and a rapamycin- sensitive pathway are required for C2C12 myogenesis. J Biol Chem 274:4341–4346

    Article  CAS  PubMed  Google Scholar 

  • Cuenda A, Rousseau S (2007) p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773:1358–1375

    Article  CAS  PubMed  Google Scholar 

  • Forcales SV, Albini S, Giordani L, Malecova B, Cignolo L, Chernov A, Coutinho P, Saccone V, Consalvi S, Williams R et al (2012) Signal-dependent incorporation of MyoD–BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex. EMBO J 31:301–316

    Article  CAS  PubMed  Google Scholar 

  • Geraldo S, Khanzada UK, Parsons M, Chilton JK, Gordon-Weeks PR (2008) Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis. Nat Cell Biol 10:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Griffin CA, Apponi LH, Long KK, Pavlath GK (2010) Chemokine expression and control of muscle cell migration during myogenesis. J Cell Sci 123:3052–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gros J, Manceau M, Thomé V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435:954–958

    Article  CAS  PubMed  Google Scholar 

  • Guasconi V, Puri PL (2009) Chromatin: the interface between extrinsic cues and the epigenetic regulation of muscle regeneration. Trends Cell Biol 19:286–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J-W, Lee H-J, Bae G-U, Kang J-S (2011) Promyogenic function of Integrin/FAK signaling is mediated by Cdo, Cdc42 and MyoD. Cell Signal 23(7):1162–1169

    Article  CAS  PubMed  Google Scholar 

  • Horsley V, Pavlath GK (2002) NFAT: ubiquitous regulator of cell differentiation and adaptation. J Cell Biol 156:771–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen KM, Pavlath GK (2008) Molecular control of mammalian myoblast fusion. Methods Mol Biol 475:115–133

    Article  CAS  PubMed  Google Scholar 

  • Jiang BH, Zheng JZ, Vogt PK (1998) An essential role of phosphatidylinositol 3- kinase in myogenic differentiation. Proc Natl Acad Sci U S A 95:14179–14183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang BH, Aoki M, Zheng JZ, Li J, Vogt PK (1999) Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B. Proc Natl Acad Sci U S A 96:2077–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J-S, Bae G-U, Yi M-J, Yang Y-J, Oh J-E, Takaesu G, Zhou YT, Low BC, Krauss RS (2008) A Cdo/Bnip-2/Cdc42 signaling pathway regulates p38α/β MAPK activity and myogenic differentiation. J Cell Biol 182:497–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kassar-Duchossoy L, Giacone E, Gayraud-Morel B, Jory A, Gomès D, Tajbakhsh S (2005) Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev 19:1426–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Kim S, Shin H, Uhm CS (2008) Intercellular interaction observed by atomic force microscopy. Ultramicroscopy 108:1148–1151

    Article  CAS  PubMed  Google Scholar 

  • Laurin M, Fradet N, Blangy A, Hall A, Vuori K, Côté JF (2008) The atypical Rac activator Dock180 (Dock1) regulates myoblast fusion in vivo. Proc Natl Acad Sci U S A 105:15446–15451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lluis F, Ballestar E, Suelves M, Esteller M, Munoz-Canoves P (2005) E47 phosphorylation by p38 MAPK promotes MyoD/E47 association and muscle-specific gene transcription. EMBO J 24:974–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu M, Krauss RS (2010) N-cadherin ligation, but not Sonic hedgehog binding, initiates Cdo-dependent p38α/β MAPK signaling in skeletal myoblasts. Proc Natl Acad Sci U S A 107:4212–4217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancini A, Sirabella D, Zhang W, Yamazaki H, Shirao T, Krauss RS (2011) Regulation of myotube formation by the actin-binding factor drebrin. Skelet Muscle 1:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercer JC, Qi Q, Mottram LF, Law M, Bruce D, Iyer A, Morales JL, Yamazaki H, Shirao T, Peterson BR et al (2010) Chemico-genetic identification of drebrin as a regulator of calcium responses. Int J Biochem Cell Biol 42:337–345

    Article  CAS  PubMed  Google Scholar 

  • Mizui T, Kojima N, Yamazaki H, Katayama M, Hanamura K, Shirao T (2009) Drebrin E is involved in the regulation of axonal growth through actin-myosin interactions. J Neurochem 109:611–622

    Article  CAS  PubMed  Google Scholar 

  • Moore CA, Parkin CA, Bidet Y, Ingham PW (2007) A role for the Myoblast city homologues Dock1 and Dock5 and the adaptor proteins Crk and Crk-like in zebrafish myoblast fusion. Development 134:3145–3153

    Article  CAS  PubMed  Google Scholar 

  • Nowak SJ, Nahirney PC, Hadjantonakis AK, Baylies MK (2009) Nap1-mediated actin remodeling is essential for mammalian myoblast fusion. J Cell Sci 122:3282–3293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor RS, Steeds CM, Wiseman RW, Pavlath GK (2008) Phosphocreatine as an energy source for actin cytoskeletal rearrangements during myoblast fusion. J Physiol 586:2841–2853

    Article  PubMed  PubMed Central  Google Scholar 

  • Onel SF, Renkawitz-Pohl R (2009) FuRMAS: triggering myoblast fusion in Drosophila. Dev Dyn 238:1513–1525

    Article  PubMed  Google Scholar 

  • Pajcini KV, Pomerantz JH, Alkan O, Doyonnas R, Blau HM (2008) Myoblasts and macrophages share molecular components that contribute to cell-cell fusion. J Cell Biol 180:1005–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallafacchina G, François S, Regnault B, Czarny B, Dive V, Cumano A, Montarras D, Buckingham M (2010) An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells. Stem Cell Res 4(2):77–91

    Article  CAS  PubMed  Google Scholar 

  • Perdiguero E, Ruiz-Bonilla V, Gresh L, Hui L, Ballestar E, Sousa-Victor P, Baeza-Raja B, Jardí M, Bosch-Comas A, Esteller M et al (2007) Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38α in abrogating myoblast proliferation. EMBO J 26:1245–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Martínez M, Gordón-Alonso M, Cabrero JR, Barrero-Villar M, Rey M, Mittelbrunn M, Lamana A, Morlino G, Calabia C, Yamazaki H et al (2010) F-actin- binding protein drebrin regulates CXCR4 recruitment to the immune synapse. J Cell Sci 123:1160–1170

    Article  PubMed  Google Scholar 

  • Pownall ME, Gustafsson MK, Emerson CP Jr (2002) Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu Rev Cell Dev Biol 18:747–783

    Article  CAS  PubMed  Google Scholar 

  • Quach NL, Rando TA (2006) Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells. Dev Biol 293:38–52

    Article  CAS  PubMed  Google Scholar 

  • Quach NL, Biressi S, Reichardt LF, Keller C, Rando TA (2009) Focal Adhesion Kinase Signaling Regulates the Expression of Caveolin 3 and β1 Integrin, Genes Essential for Normal Myoblast Fusion. Mol Biol Cell 20:3422–3435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rampalli S, Li L, Mak E, Ge K, Brand M, Tapscott SJ, Dilworth FJ (2007) p38 MAPK signaling regulates recruitment of Ash2L-containing methyltransferase complexes to specific genes during differentiation. Nat Struct Mol Biol 14:1150–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953

    Article  CAS  PubMed  Google Scholar 

  • Richardson BE, Nowak SJ, Baylies MK (2008) Myoblast fusion in fly and vertebrates: new genes, new processes and new perspectives. Traffic 9:1050–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudnicki MA, Le Grand F, McKinnell I, Kuang S (2008) The Molecular Regulation of Muscle Stem Cell Function. Cold Spring Harb Symp Quant Biol 73:323–331

    Article  CAS  PubMed  Google Scholar 

  • Schulz RA, Yutzey KE (2004) Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development. Dev Biol 266:1–16

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi-Yamaguchi Y, Sato Y, Sakai R, Mizutani A, Knöpfel T, Mori N, Mikoshiba K, Furuichi T (2009) Interaction of Cupidin/Homer2 with two actin cytoskeletal regulators, Cdc42 small GTPase and Drebrin, in dendritic spines. BMC Neurosci 10:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Simone C, Forcales SV, Hill DA, Imbalzano AN, Latella L, Puri PL (2004) p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nat Genet 36:738–743

    Article  CAS  PubMed  Google Scholar 

  • Sohn RL, Huang P, Kawahara G, Mitchell M, Guyon J, Kalluri R, Kunkel LM, Gussoni E (2009) A role for nephrin, a renal protein, in vertebrate skeletal muscle cell fusion. Proc Natl Acad Sci U S A 106:9274–9279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorci G, Riuzzi F, Arcuri C, Giambanco I, Donato R (2004) Amphoterin stimulates myogenesis and counteracts the antimyogenic factors basic fibroblast growth factor and S100B via RAGE binding. Mol Cell Biol 24:4880–4894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivas BP, Woo J, Leong WY, Roy S (2007) A conserved molecular pathway mediates myoblast fusion in insects and vertebrates. Nat Genet 39:781–786

    Article  CAS  PubMed  Google Scholar 

  • Stiber JA, Tabatabaei N, Hawkins AF, Hawke T, Worley PF, Williams RS, Rosenberg P (2005) Homer modulates NFAT-dependent signaling during muscle differentiation. Dev Biol 287:213–224

    Article  CAS  PubMed  Google Scholar 

  • Straube A, Merdes A (2007) EB3 regulates microtubule dynamics at the cell cortex and is required for myoblast elongation and fusion. Curr Biol 17:1318–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajbakhsh S, Buckingham M (2000) The birth of muscle progenitor cells in the mouse: spatiotemporal considerations. Curr Top Dev Biol 48:225–268

    Article  CAS  PubMed  Google Scholar 

  • Takaesu G, Kang JS, Bae GU, Yi MJ, Lee CM, Reddy EP, Krauss RS (2006) Activation of p38α/β MAPK in myogenesis via binding of the scaffold protein JLP to the cell surface protein Cdo. J Cell Biol 175:383–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamir Y, Bengal E (2000) Phosphoinositide 3-kinase induces the transcriptional activity of MEF2 proteins during muscle differentiation. J Biol Chem 275:34424–34432

    Article  CAS  PubMed  Google Scholar 

  • Tapscott SJ (2005) The circuitry of a master switch: myod and the regulation of skeletal muscle gene transcription. Development 132:2685–2695

    Article  CAS  PubMed  Google Scholar 

  • Trevillyan J, Chiou XG, Chen YW, Ballaron SJ, Sheets MP, Smith ML, Wiedeman PE, Warrior U, Wilkins J, Gubbins EJ et al (2001) Potent inhibition of NFAT activation and T cell cytokine production by novel low molecular weight pyrazole compounds. J Biol Chem 276:48118–48126

    Article  CAS  PubMed  Google Scholar 

  • Vasyutina E, Martarelli B, Brakebusch C, Wende H, Birchmeier C (2009) The small G-proteins Rac1 and Cdc42 are essential for myoblast fusion in the mouse. Proc Natl Acad Sci U S A 106:8935–8940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Woodring PJ, Bhakta KS, Tamura K, Wen F, Feramisco JR, Karin M, Wang JY, Puri PL (2000) p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Mol Cell Biol 20:3951–3964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zetser A, Gredinger E, Bengal E (1999) p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the Mef2c transcription factor. J Biol Chem 274:5193–5200

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Zaal KJ, Sheridan J, Mehta A, Gundersen GG, Ralston E (2009) Microtubule plus-end binding protein EB1 is necessary for muscle cell differentiation, elongation and fusion. J Cell Sci 122:1401–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Krauss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Krauss, R.S. (2017). Regulation of Skeletal Myoblast Differentiation by Drebrin. In: Shirao, T., Sekino, Y. (eds) Drebrin. Advances in Experimental Medicine and Biology, vol 1006. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56550-5_22

Download citation

Publish with us

Policies and ethics