Skip to main content

Retinitis Pigmentosa in Korean Patients

  • Chapter
  • First Online:
Advances in Vision Research, Volume I

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 913 Accesses

Abstract

Retinitis pigmentosa (RP) is a serious disease characterized by progressive degeneration of the retina and usually ends up with bilateral blindness. RP is the most common inherited retinal disease. Recent advance in genetic research has greatly improved our knowledge about RP. Since the first identification of causal gene rhodopsin, more than 60 causal genes and 3000 disease-causing mutations have been reported [1]. And imaging technology such as a high-resolution spectral domain optical coherence tomography (OCT) revealed new aspects of RP [2]. In RP patients, the vision-specific quality of life cannot be explained only by visual acuity or field, and both of them are related to the visual function [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. RetNet – Retinal Information Network. https://sph.uth.edu/retnet/. Accessed 9 Feb 2016.

  2. Yoon CK, Yu HG. The structure-function relationship between macular morphology and visual function analyzed by optical coherence tomography in retinitis pigmentosa. J Ophthalmol. 2013;2013:821460. doi:10.1155/2013/821460.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Seo JH, Yu HG, Lee BJ. Assessment of functional vision score and vision-specific quality of life in individuals with retinitis pigmentosa. Korean J Ophthalmol. 2009;23:164–8. doi:10.3341/kjo.2009.23.3.164.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bunker CH, Berson EL, Bromley WC, Hayes RP, Roderick TH. Prevalence of retinitis pigmentosa in Maine. Am J Ophthalmol. 1984;97:357–65.

    Article  CAS  PubMed  Google Scholar 

  5. Ammann F, Klein D, Franceschetti A. Genetic and epidemiological investigations on pigmentary degeneration of the retina and allied disorders in Switzerland. J Neurol Sci. 1965;2:183–96.

    Article  CAS  PubMed  Google Scholar 

  6. Haim M. Epidemiology of retinitis pigmentosa in Denmark. Acta Ophthalmol Scand Suppl. 2002;80:1–34.

    Article  Google Scholar 

  7. You QS, Xu L, Xing Y, et al. Prevalence of retinitis pigmentosa in North China: the Beijing Eye Public Health Care Project. Acta Ophthalmol. 2013;91:499–500. doi:10.1111/aos.12163.

    Article  Google Scholar 

  8. Park JH, Moon NJ. Clinical analysis of 500 low vision patients. J Korean Ophthalmol Soc. 2005;46:345–52.

    Google Scholar 

  9. Kimberling WJ, Hildebrand MS, Shearer AE, et al. Frequency of Usher syndrome in two pediatric populations: implications for genetic screening of deaf and hard of hearing children. Genet Med. 2010;12:512–6. doi:10.1097/GIM.0b013e3181e5afb8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zaghloul NA, Katsanis N. Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest. 2009;119:428–37. doi:10.1172/JCI37041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006;368:1795–809. doi:10.1016/s0140-6736(06)69740-7.

    Article  CAS  PubMed  Google Scholar 

  12. Hu D-N. Genetic aspects of retinitis pigmentosa in China. Am J Med Genet. 1982;12:51–6. doi:10.1002/ajmg.1320120107.

    Article  CAS  PubMed  Google Scholar 

  13. Hayakawa M, Fujiki K, Kanai A, et al. Multicenter genetic study of retinitis pigmentosa in Japan: I. Genetic heterogeneity in typical retinitis pigmentosa. Jpn J Ophthalmol. 2016;41(1):1–6. http://www.ncbi.nlm.nih.gov/pubmed/9147180. Accessed 9 Feb 2016.

  14. Kim KJ, Kim C, Bok J, et al. Spectrum of rhodopsin mutations in Korean patients with retinitis pigmentosa. Mol Vis. 2011;17:844–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hagiwara A, Yamamoto S, Ogata K, et al. Macular abnormalities in patients with retinitis pigmentosa: prevalence on OCT examination and outcomes of vitreoretinal surgery. Acta Ophthalmol. 2011;89:e122–5. doi:10.1111/j.1755-3768.2010.01866.x.

    Article  PubMed  Google Scholar 

  16. Makiyama Y, Oishi A, Otani A, Ogino K. Prevalence and spatial distribution of cystoid spaces in retinitis pigmentosa. Retina. 2014;34:981–8. doi:10.1097/IAE.0000000000000010.

    Article  PubMed  Google Scholar 

  17. Kim YJ, Joe SG, Lee DH, Lee JY, Kim JG, Yoon YH. Correlations between spectral-domain OCT measurements and visual acuity in cystoid macular edema associated with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2013;54:1303–9. doi:10.1167/iovs.12-10149.

    Article  PubMed  Google Scholar 

  18. Lee SH, Yu HG, Seo JM, et al. Hereditary and clinical features of retinitis pigmentosa in Koreans. J Korean Med Sci. 2010;25:918–23. doi:10.3346/jkms.2010.25.6.918.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pruett RC. Retinitis pigmentosa: clinical observations and correlations. Trans Am Ophthalmol Soc. 1983;81:693–735.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fishman GA, Anderson RJ, Lourenco P, Lourenq P, Lourenco P. Prevalence of posterior subcapsular lens opacities in patients with retinitis pigmentosa. Br J Ophthalmol. 1985;69:263–6. doi:10.1136/bjo.69.4.263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Berson EL, Rosner B, Simonoff E. Risk factors for genetic typing and detection in retinitis pigmentosa. Am J Ophthalmol. 1980;89:763–75.

    Article  CAS  PubMed  Google Scholar 

  22. Kim TN, Lee JE, Lee EJ, et al. Prevalence of and factors associated with lens opacities in a Korean adult population with and without diabetes: the 2008–2009 Korea National Health and Nutrition Examination Survey. PLoS One. 2014;9:e94189. doi:10.1371/journal.pone.0094189.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sieving PA, Fishman GA. Refractive errors of retinitis pigmentosa patients. Br J Ophthalmol. 1978;62:163–7. doi:10.1136/bjo.62.3.163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krantz EM, Cruickshanks KJ, Klein BEK, Klein R, Huang G-H, Nieto FJ. Measuring refraction in adults in epidemiological studies. Arch Ophthalmol (Chicago, Ill 1960). 2010;128(1):88–92. doi:10.1001/archophthalmol.2009.349.

    Article  Google Scholar 

  25. Fishman GA, Farber MD, Derlacki DJ. X-linked retinitis pigmentosa. Profile of clinical findings. Arch Ophthalmol (Chicago, Ill 1960). 1988;1063:369–75. http://www.ncbi.nlm.nih.gov/pubmed/3257866. Accessed 29 Jan 2016.

  26. Jayasundera T, Branham KEH, Othman M, et al. RP2 phenotype and pathogenetic correlations in X-linked retinitis pigmentosa. Arch Ophthalmol (Chicago, Ill 1960). 2010;128:915–23. doi:10.1001/archophthalmol.2010.122.

    Article  CAS  Google Scholar 

  27. Pelletier V, Jambou M, Delphin N, et al. Comprehensive survey of mutations in RP2 and RPGR in patients affected with distinct retinal dystrophies: genotype-phenotype correlations and impact on genetic counseling. Hum Mutat. 2007;28:81–91. doi:10.1002/humu.20417.

    Article  CAS  PubMed  Google Scholar 

  28. Chassine T, Bocquet B, Daien V, et al. Autosomal recessive retinitis pigmentosa with RP1 mutations is associated with myopia. Br J Ophthalmol. 2015; doi:10.1136/bjophthalmol-2014-306224.

    PubMed  Google Scholar 

  29. Kim EC, Morgan IG, Kakizaki H, Kang S, Jee D. Prevalence and risk factors for refractive errors: Korean National Health and Nutrition Examination Survey 2008–2011. PLoS One. 2013;8:e80361. doi:10.1371/journal.pone.0080361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eisenberger T, Neuhaus C, Khan AO, et al. Increasing the yield in targeted next-generation sequencing by implicating CNV analysis, non-coding exons and the overall variant load: the example of retinal dystrophies. In: Li T, editor. PLoS One. 2013;8:e78496. doi:10.1371/journal.pone.0078496.

  31. Xu Y, Guan L, Shen T, et al. Mutations of 60 known causative genes in 157 families with retinitis pigmentosa based on exome sequencing. Hum Genet. 2014;133:1255–71. doi:10.1007/s00439-014-1460-2.

    Article  PubMed  Google Scholar 

  32. Oishi M, Oishi A, Gotoh N, et al. Comprehensive molecular diagnosis of a large cohort of Japanese retinitis pigmentosa and Usher syndrome patients by next-generation sequencing. Invest Ophthalmol Vis Sci. 2014;55:7369–75. doi:10.1167/iovs.14-15458.

    Article  CAS  PubMed  Google Scholar 

  33. Yoon C-K, Kim NKD, Joung J-G, et al. The diagnostic application of targeted re-sequencing in Korean patients with retinitis pigmentosa. BMC Genomics. 2015;16:515. doi:10.1186/s12864-015-1723-x.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sohocki MM, Daiger SP, Bowne SJ, et al. Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat. 2001;17:42–51. doi:10.1002/1098-1004(2001)17:1<42::aid-humu5>3.0.co;2-k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sung CH, Davenport CM, Hennessey JC, et al. Rhodopsin mutations in autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci U S A. 1991;88:6481–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sullivan LS, Bowne SJ, Birch DG, et al. Prevalence of disease-causing mutations in families with autosomal dominant retinitis pigmentosa: a screen of known genes in 200 families. Invest Ophthalmol Vis Sci. 2006;47(7):3052–64. doi:10.1167/iovs.05-1443.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chan WM, Yeung KY, Pang CP, et al. Rhodopsin mutations in Chinese patients with retinitis pigmentosa. Br J Ophthalmol. 2001;85:1046–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang G, Xie S, Feng N, Yuan Z, Zhang M, Zhao J. Spectrum of rhodopsin gene mutations in Chinese patients with retinitis pigmentosa. Mol Vis. 2014;20:1132–6.

    PubMed  PubMed Central  Google Scholar 

  39. Li S, Xiao X, Wang P, Guo X, Zhang Q. Mutation spectrum and frequency of the RHO gene in 248 Chinese families with retinitis pigmentosa. Biochem Biophys Res Commun. 2010;401:42–7. doi:10.1016/j.bbrc.2010.09.004.

    Article  CAS  PubMed  Google Scholar 

  40. Ando Y, Ohmori M, Ohtake H, et al. Mutation screening and haplotype analysis of the rhodopsin gene locus in Japanese patients with retinitis pigmentosa. Mol Vis. 2007;13:1038–44. doi:v13/a113 [pii].

    Google Scholar 

  41. Akhtar M. Structure and conformation of rhodopsin in the disc membrane. Biochem Soc Trans. 1983;11(6):668–72. http://www.ncbi.nlm.nih.gov/pubmed/6667775. Accessed 31 Jan 2016.

  42. Hargrave PA, Hamm HE, Hofmann KP. Interaction of rhodopsin with the G-protein, transducin. Bioessays. 1993;15:43–50. doi:10.1002/bies.950150107.

    Article  CAS  PubMed  Google Scholar 

  43. Stojanovic A, Hwa J. Rhodopsin and retinitis pigmentosa: shedding light on structure and function. Recept Channels. 2002;8(1):33–50. doi:10.1080/10606820290004976.

    CAS  PubMed  Google Scholar 

  44. Kim C, Chung H, Yu HG. Association of p.P347L in the rhodopsin gene with early-onset cystoid macular edema in patients with retinitis pigmentosa. Ophthalmic Genet. 2012;33:96–9. doi:10.3109/13816810.2011.642453.

    Article  CAS  PubMed  Google Scholar 

  45. Aleman TS, Cideciyan AV, Sumaroka A, et al. Inner retinal abnormalities in X-linked retinitis pigmentosa with RPGR mutations. Invest Ophthalmol Vis Sci. 2007;48:4759–65. doi:10.1167/iovs.07-0453.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tanackovic G, Ransijn A, Thibault P, et al. PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa. Hum Mol Genet. 2011;20:2116–30. doi:10.1093/hmg/ddr094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rio Frio T, Wade NM, Ransijn A, Berson EL, Beckmann JS, Rivolta C. Premature termination codons in PRPF31 cause retinitis pigmentosa via haploinsufficiency due to nonsense-mediated mRNA decay. J Clin Invest. 2008;118:1519–31. doi:10.1172/jci34211.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rio Frio T, Civic N, Ransijn A, Beckmann JS, Rivolta C. Two trans-acting eQTLs modulate the penetrance of PRPF31 mutations. Hum Mol Genet. 2008;17(20):3154–65. doi:10.1093/hmg/ddn212.

    Article  PubMed  Google Scholar 

  49. McGee TL, Devoto M, Ott J, Berson EL, Dryja TP. Evidence that the penetrance of mutations at the RP11 locus causing dominant retinitis pigmentosa is influenced by a gene linked to the homologous RP11 allele. Am J Hum Genet. 1997;61(5):1059–66. doi:10.1086/301614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Venturini G, Rose AM, Shah AZ, Bhattacharya SS, Rivolta C. CNOT3 is a modifier of PRPF31 mutations in retinitis pigmentosa with incomplete penetrance. PLoS Genet. 2012;8:e1003040. doi:10.1371/journal.pgen.1003040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Villanueva A, Willer JR, Bryois J, Dermitzakis ET, Katsanis N, Davis EE. Whole exome sequencing of a dominant retinitis pigmentosa family identifies a novel deletion in PRPF31. Invest Ophthalmol Vis Sci. 2014;55:2121–9. doi:10.1167/iovs.13-13827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martínez-Gimeno M, Gamundi MJ, Hernan I, et al. Mutations in the pre-mRNA splicing-factor genes PRPF3, PRPF8, and PRPF31 in Spanish families with autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2003;44(5):2171–177. http://www.ncbi.nlm.nih.gov/pubmed/12714658. Accessed 31 Jan 2016.

  53. Sato H, Wada Y, Itabashi T, Nakamura M, Kawamura M, Tamai M. Mutations in the pre-mRNA splicing gene, PRPF31, in Japanese families with autosomal dominant retinitis pigmentosa. Am J Ophthalmol. 2005;140(3):537–40. doi:10.1016/j.ajo.2005.02.050.

    Article  CAS  PubMed  Google Scholar 

  54. Gandra M, Anandula V, Authiappan V, et al. Retinitis pigmentosa: mutation analysis of RHO, PRPF31, RP1, and IMPDH1 genes in patients from India. Mol Vis. 2008;14:1105–113. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2426732&tool=pmcentrez&rendertype=abstract. Accessed 31 Jan 2016.

  55. Xu F, Sui R, Liang X, Li H, Jiang R, Dong F. Novel PRPF31 mutations associated with Chinese autosomal dominant retinitis pigmentosa patients. Mol Vis. 2012;18:3021–xxx.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim C, Kim KJ, Bok J, et al. Microarray-based mutation detection and phenotypic characterization in Korean patients with retinitis pigmentosa. Mol Vis. 2012;18:2398–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wada Y, Itabashi T, Sato H, Tamai M. Clinical features of a Japanese family with autosomal dominant retinitis pigmentosa associated with a Thr494Met mutation in the HPRP3 gene. Graefes Arch Clin Exp Ophthalmol = Albr von Graefes Arch für Klin und Exp Ophthalmol. 2004;242(11):956–61. doi:10.1007/s00417-004-0923-x.

    Article  Google Scholar 

  58. Zelhof AC, Hardy RW, Becker A, Zuker CS. Transforming the architecture of compound eyes. Nature. 2006;443(7112):696–9. doi:10.1038/nature05128.

    Article  CAS  PubMed  Google Scholar 

  59. Iwanami M, Oshikawa M, Nishida T, Nakadomari S, Kato S. High prevalence of mutations in the EYS gene in Japanese patients with autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2012;53:1033–40. doi:10.1167/iovs.11-9048.

    Article  CAS  PubMed  Google Scholar 

  60. Abd El-Aziz MM, O’Driscoll CA, Kaye RS, et al. Identification of novel mutations in the ortholog of Drosophila eyes shut gene (EYS) causing autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2010;51:4266–72. doi:10.1167/iovs.09-5109.

    Article  PubMed  Google Scholar 

  61. Arai Y, Maeda A, Hirami Y, et al. Retinitis pigmentosa with EYS mutations is the most prevalent inherited retinal dystrophy in Japanese populations. J Ophthalmol. 2015;2015:819760. doi:10.1155/2015/819760.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Audo I, Sahel J-A, Mohand-Saïd S, et al. EYS is a major gene for rod-cone dystrophies in France. Hum Mutat. 2010;31:E1406–35. doi:10.1002/humu.21249.

    Article  CAS  PubMed  Google Scholar 

  63. Littink KW, van den Born LI, Koenekoop RK, et al. Mutations in the EYS gene account for approximately 5% of autosomal recessive retinitis pigmentosa and cause a fairly homogeneous phenotype. Ophthalmology. 2010;117:2026–33, 2033.e1–7. doi:10.1016/j.ophtha.2010.01.040.

  64. Barragán I, Borrego S, Pieras JI, et al. Mutation spectrum of EYS in Spanish patients with autosomal recessive retinitis pigmentosa. Hum Mutat. 2010;31:E1772–800.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bandah-Rozenfeld D, Littink KW, Ben-Yosef T, et al. Novel null mutations in the EYS gene are a frequent cause of autosomal recessive retinitis pigmentosa in the Israeli population. Invest Opthalmol Vis Sci. 2010;51:4387. doi:10.1167/iovs.09-4732.

    Article  Google Scholar 

  66. Hosono K, Ishigami C, Takahashi M, et al. Two novel mutations in the EYS gene are possible major causes of autosomal recessive retinitis pigmentosa in the Japanese population. PLoS One. 2012;7:e31036. doi:10.1371/journal.pone.0031036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pieras JI, Barragán I, Borrego S, et al. Copy-number variations in EYS: a significant event in the appearance of arRP. Invest Ophthalmol Vis Sci. 2011;52:5625–31. doi:10.1167/iovs.11-7292.

    Article  CAS  PubMed  Google Scholar 

  68. Song D, Grieco S, Li Y, et al. A murine RP1 missense mutation causes protein mislocalization and slowly progressive photoreceptor degeneration. Am J Pathol. 2014;184:2721–9. doi:10.1016/j.ajpath.2014.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu Q, Lyubarsky A, Skalet JH, Pugh EN, Pierce EA. RP1 is required for the correct stacking of outer segment discs. Invest Ophthalmol Vis Sci. 2003;44(10):4171–183. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1904498&tool=pmcentrez&rendertype=abstract. Accessed 27 Jan 2016.

  70. Audo I, Mohand-Saïd S, Dhaenens C-M, et al. RP1 and autosomal dominant rod-cone dystrophy: novel mutations, a review of published variants, and genotype-phenotype correlation. Hum Mutat. 2012;33:73–80. doi:10.1002/humu.21640.

    Article  CAS  PubMed  Google Scholar 

  71. Chen LJ, Lai TY, Tam PO, et al. Compound heterozygosity of two novel truncation mutations in RP1 causing autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2010;51:2236–42. doi:10.1167/iovs.09-4437.

    Article  PubMed  Google Scholar 

  72. Branham K, Othman M, Brumm M, et al. Mutations in RPGR and RP2 account for 15% of males with simplex retinal degenerative disease. Invest Ophthalmol Vis Sci. 2012;53:8232–7. doi:10.1167/iovs.12-11025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chapple JP, Hardcastle AJ, Grayson C, Spackman LA, Willison KR, Cheetham ME. Mutations in the N-terminus of the X-linked retinitis pigmentosa protein RP2 interfere with the normal targeting of the protein to the plasma membrane. Hum Mol Genet. 2000;9(13):1919–926. http://www.ncbi.nlm.nih.gov/pubmed/10942419. Accessed 13 Feb 2016.

  74. Grayson C, Bartolini F, Chapple JP, et al. Localization in the human retina of the X-linked retinitis pigmentosa protein RP2, its homologue cofactor C and the RP2 interacting protein Arl3. Hum Mol Genet. 2002;11(24):3065–74. http://www.ncbi.nlm.nih.gov/pubmed/12417528. Accessed 18 Feb 2016.

  75. Liu F, Chen J, Yu S, et al. Knockout of RP2 decreases GRK1 and rod transducin subunits and leads to photoreceptor degeneration in zebrafish. Hum Mol Genet. 2015;24:4648–59. doi:10.1093/hmg/ddv197.

    Article  CAS  PubMed  Google Scholar 

  76. Kühnel K, Veltel S, Schlichting I, Wittinghofer A. Crystal structure of the human retinitis pigmentosa 2 protein and its interaction with Arl3. Structure. 2006;14(2):367–78. doi:10.1016/j.str.2005.11.008.

    Article  PubMed  Google Scholar 

  77. Comander J, Weigel-DiFranco C, Sandberg MA, Berson EL. Visual function in carriers of X-linked retinitis pigmentosa. Ophthalmology. 2015;122:1899–906. doi:10.1016/j.ophtha.2015.05.039.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Raghupathy RK, Gautier P, Soares DC, Wright AF, Shu X. Evolutionary characterization of the retinitis pigmentosa GTPase regulator gene. Invest Ophthalmol Vis Sci. 2015;56(11):6255–64. doi:10.1167/iovs.15-17726.

    Article  CAS  PubMed  Google Scholar 

  79. Ahn SM, Kim TH, Lee S, et al. The first Korean genome sequence and analysis: full genome sequencing for a socio-ethnic group. Genome Res. 2009;19:1622–9. doi:10.1101/gr.092197.109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeong Gon Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Yu, H.G., Park, U.C., Yoon, C.K. (2017). Retinitis Pigmentosa in Korean Patients. In: Prakash, G., Iwata, T. (eds) Advances in Vision Research, Volume I. Essentials in Ophthalmology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56511-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56511-6_9

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56509-3

  • Online ISBN: 978-4-431-56511-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics