Skip to main content

Default Mode of Brain Activity Observed in the Lateral, Medial, and Orbital Prefrontal Cortex in the Monkey

  • Chapter
  • First Online:
The Prefrontal Cortex as an Executive, Emotional, and Social Brain
  • 1673 Accesses

Abstract

Human neuroimaging studies have demonstrated the presence of a “default system” that consists mainly of the medial prefrontal and medial parietal areas and shows cognitive task-induced deactivation. The default activity is thought to be concerned with internal thought processes; however, there have been few attempts to demonstrate a default system that shows task-induced deactivation in nonhuman primates. Recently, a positron emission tomography (PET) study demonstrated working memory (WM) task-induced deactivations in the medial prefrontal (MPFC), lateral prefrontal (LPFC), orbital prefrontal (OFC), and medial posterior parietal areas during rest, suggesting the existence of internal thought processes in the monkey. In humans, activities of the executive system (such as LPFC) and default system (such as MPFC) are generally anticorrelated, and the OFC is rarely activated during rest. The rest-related activity in the monkey LPFC and OFC may be associated more with emotional or motivational aspects of internal thought processes. Dopamine in the prefrontal cortex plays important roles in cognitive operations, and a previous monkey microdialysis study revealed an increase of dopamine release in the LPFC during the WM task compared with that during rest. A recent study indicated a decrease in dopamine release in the anterior default system (MPFC/ACC) during the WM task compared with that during rest, indicating a rest-related increase in dopamine release in the anterior default system. As dopamine release in the LPFC contributes to cognitive operations such as WM, dopamine release in the MPFC/ACC during rest may be associated with other kinds of cognitive operations, such as internal thought.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Binder JR, Frost JA, Hammeke TA, Bellgowan PSF, Rao SM, Cox RW (1999) Conceptual processing during the conscious resting state: a functional MRI study. J Cogn Neurosci 11:80–93

    Article  CAS  PubMed  Google Scholar 

  • Brosnan SF, De Waal FB (2003) Monkeys reject unequal pay. Nature 425:297–299

    Article  CAS  PubMed  Google Scholar 

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  • Burkart JM, Fehr E, Efferson C, van Schaik CP (2007) Other-regarding preferences in a non-human primate: common marmosets provision food altruistically. Proc Natl Acad Sci U S A 104:19762–19766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christoff K, Ream JM, Gabrieli JD (2004) Neural basis of spontaneous thought processes. Cortex 40:623–630

    Article  PubMed  Google Scholar 

  • Christoff K, Gordon AM, Smallwood J, Smith R, Schooler JW (2009) Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc Natl Acad Sci U S A 106:8719–8724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cools R, D’Esposito M (2011) Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 69:e113–e125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci U S A 105:4028–4032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fassbender C, Zhang H, Buzy WM, Cortes CR, Mizuiri D, Beckett L, Schweitzer JB (2009) A lack of default network suppression is linked to increased distractibility in ADHD. Brain Res 1273:114–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flombaum JI, Santos LR (2005) Rhesus monkeys attribute perceptions to others. Curr Biol 15:447–452

    Article  CAS  PubMed  Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711

    Article  CAS  PubMed  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26:15–29

    Article  PubMed  Google Scholar 

  • Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD (2007) Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry 164:450–457

    Article  PubMed  Google Scholar 

  • Grady CL, Springer MV, Hongwanishkul D, McIntosh AR, Winocur G (2006) Age-related changes in brain activity across the adult lifespan. J Cogn Neurosci 18:227–241

    Article  PubMed  Google Scholar 

  • Greicius MD, Kiviniemi V, Tervonen O, Vainionpaa V, Alahuhta S, Reiss AL, Menon V (2008) Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29:839–847

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimm S, Boesiger P, Beck J, Schuepbach D, Bermpohl F, Walter M, Ernst J, Hell D, Boeker H, Northoff G (2009) Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects. Neuropsychopharmacology 34:932–943

    Article  PubMed  Google Scholar 

  • Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694

    Article  CAS  PubMed  Google Scholar 

  • Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A 98:4259–4264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison BJ, Yucel M, Pujol J, Pantelis C (2007) Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophr Res 91:82–86

    Article  PubMed  Google Scholar 

  • Hayden BY, Smith DV, Platt ML (2009) Electrophysiological correlates of default-mode processing in macaque posterior cingulate cortex. Proc Natl Acad Sci U S A 106:5948–5953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hikosaka K, Watanabe M (2000) Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards. Cereb Cortex 10:263–271

    Article  CAS  PubMed  Google Scholar 

  • Horovitz SG, Braun AR, Carr WS, Picchioni D, Balkin TJ, Fukunaga M, Duyn JH (2009) Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci U S A 106:11376–11381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingvar DH (1979) “Hyperfrontal” distribution of the cerebral grey matter flow in resting wakefulness; on the functional anatomy of the conscious state. Acta Neurol Scand 60:12–25

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Mikami A, Ando I, Tsukada H (2004) Functional brain mapping of the macaque related to spatial working memory as revealed by PET. Cereb Cortex 14:106–119

    Article  PubMed  Google Scholar 

  • Jerbi K, Vidal JR, Ossandon T, Dalal SS, Jung J, Hoffmann D, Minotti L, Bertrand O, Kahane P, Lachaux JP (2010) Exploring the electrophysiological correlates of the default-mode network with intracerebral EEG. Front Syst Neurosci 4:27

    PubMed  PubMed Central  Google Scholar 

  • Joensson M, Thomsen KR, Andersen LM, Gross J, Mouridsen K, Sandberg K, Østergaard L, Lou HC (2015) Making sense: dopamine activates conscious self-monitoring through medial prefrontal cortex. Hum Brain Mapp 36:1866–1877

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelley WM, Macrae CN, Wyland CL, Caglar S, Inati S, Heatherton TF (2002) Finding the self? An event-related fMRI study. J Cogn Neurosci 14:785–794

    Article  CAS  PubMed  Google Scholar 

  • Kennedy DP, Redcay E, Courchesne E (2006) Failing to deactivate: resting functional abnormalities in autism. Proc Natl Acad Sci U S A 103:8275–8280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi S, Nomoto K, Watanabe M, Hikosaka O, Schultz W, SakagamiM (2006) Influences of rewarding and aversive outcomes on activity in macaque lateral prefrontal cortex. Neuron 51:861–870

    Google Scholar 

  • Kodama T, Hikosaka K, Honda Y, Kojima T, Watanabe M (2014) Higher dopamine release induced by less rather than more preferred reward during a working memory task in the primate prefrontal cortex. Behav Brain Res 266:104–107

    Article  CAS  PubMed  Google Scholar 

  • Kodama T, Hikosaka K, Honda Y, Kojima T, Tsutsui K, Watanabe M (2015) Dopamine and glutamate release in the anterior default system during rest: a monkey microdialysis study. Behav Brain Res 294:194–197

    Article  CAS  PubMed  Google Scholar 

  • Kojima T, Onoe H, Hikosaka K, Tsutsui K, Tsukada H, Watanabe M (2009) Default mode of brain activity demonstrated by positron emission tomography imaging in awake monkeys: higher rest-related than working memory-related activity in medial cortical areas. J Neurosci 29:14463–14471

    Article  CAS  PubMed  Google Scholar 

  • Koshino H, Minamoto T, Yaoi K, Osaka M, Osaka N (2014) Coactivation of the default mode network regions and working memory network regions during task preparation. Sci Rep 4:5954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavin C, Melis C, Mikulan E, Gelormini C, Huepe D, Ibañez A (2013) The anterior cingulate cortex: an integrative hub for human socially-driven interactions. Front Neurosci 7:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Lustig C, Snyder AZ, Bhakta M, O’Brien KC, McAvoy M, Raichle ME, Morris JC, Buckner RL (2003) Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci U S A 100:14504–14509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado CJ, Snyder AZ, Cherry SR, Lavenex P, Amaral DG (2008) Effects of neonatal amygdala or hippocampus lesions on resting brain metabolism in the macaque monkey: a microPET imaging study. NeuroImage 39:832–846

    Article  PubMed  Google Scholar 

  • Mantini D, Gerits A, Nelissen K, Durand JB, Joly O, Simone L, Sawamura H, Wardak C, Orban GA, Buckner RL, Vanduffel W (2011) Default mode of brain function in monkeys. J Neurosci 31:12954–12962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus independent thought. Science 315:393–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto K, Suzuki W, Tanaka K (2003) Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science 301:229–232

    Article  CAS  PubMed  Google Scholar 

  • Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houde O, Crivello F, Joliot M, Petit L, Tzourio-Mazoyer N (2001) Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 54:287–298

    Article  CAS  PubMed  Google Scholar 

  • McKiernan KA, Kaufman JN, Kucera-Thompson J, Binder JR (2003) A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 15:394–408

    Article  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  CAS  PubMed  Google Scholar 

  • Miller KJ, Weaver KE, Ojemann JG (2009) Direct electrophysiological measurement of human default network areas. Proc Natl Acad Sci U S A 106:12174–12177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Doherty JP, Deichmann R, Critchley HD, Dolan RJ (2002) Neural responses during anticipation of a primary taste reward. Neuron 33:815–826

    Article  PubMed  Google Scholar 

  • Peterson BS, Potenza MN, Wang Z, Zhu H, Martin A, Marsh R, Plessen KJ, Yu S (2009) An FMRI study of the effects of psychostimulants on default-mode processing during Stroop task performance in youths with ADHD. Am J Psychiatry 166:1286–1294

    Article  PubMed  PubMed Central  Google Scholar 

  • Porcelli AJ, Delgado MR (2009) Reward processing in the human brain: insights from fMRI. In: Dreher JC, Tremblay L (eds) Handbook of reward and decision making. Academic, Oxford, pp 159–178

    Google Scholar 

  • Povinelli DJ, Parks KA, Novak MA (1991) Do rhesus monkeys (Macaca mulatta) attribute knowledge and ignorance to others? J Comp Psychol 105:318–325

    Article  CAS  PubMed  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rilling JK, Barks SK, Parr LA, Preuss TM, Faber TL, Pagnoni G, Bremner JD, Votaw JR (2007) A comparison of resting-state brain activity in humans and chimpanzees. Proc Natl Acad Sci U S A 104:17146–17151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins TW, Arnsten AF (2009) The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci 32:267–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushworth MF, Buckley MJ, Behrens TE, Walton ME, Bannerman DM (2007) Functional organization of the medial frontal cortex. Curr Opin Neurobiol 2:220–227

    Article  Google Scholar 

  • Schultz W, Tremblay L (2006) Involvement of primate orbitofrontal neurons in reward, uncertainty, and learning. In: Zald DH, Rauch SL (eds) The orbitofrontal cortex. Oxford UP, Oxford, pp 173–198

    Chapter  Google Scholar 

  • Shulman GL, Fiez J, Corbetta M, Buckner R, Miezin FM, Raichle ME, Petersen S (1997) Common blood flow changes across visual task: II decreases in cerebral cortex. J Cogn Neurosci 9:648–663

    Article  CAS  PubMed  Google Scholar 

  • Thomason ME, Chang CE, Glover GH, Gabrieli JD, Grecius MD, Gotlib IH (2008) Default mode function and task-induced deactivation have overlapping brain substrates in children. NeuroImage 41:1493–1503

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorpe SJ, Rolls ET, Maddison S (1983) The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp Brain Res 49:93–115

    Article  CAS  PubMed  Google Scholar 

  • Thut G, Schultz W, Roelcke U, Nienhusmeier M, Missimer J, Maguire RP, Leenders KL (1997) Activation of the human brain by monetary reward. NeuroReport 8:1225–1228

    Article  CAS  PubMed  Google Scholar 

  • Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M (2011) Are there internal thought processes in the monkey? Default brain activity in humans and nonhuman primates. Behav Brain Res 221:295–303

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Kodama T, Hikosaka K (1997) Increase of extracellular dopamine in primate prefrontal cortex during a working memory task. J Neurophysiol 78:2795–2798

    CAS  PubMed  Google Scholar 

  • Weiskopf N, Hutton C, Josephs O, Deichmann R (2006) Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T. NeuroImage 33:493–504

    Article  PubMed  Google Scholar 

  • Welberg L (2007) Unconscious activity in the monkey brain. Nat Rev Neurosci 8:407

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Watanabe, M. (2017). Default Mode of Brain Activity Observed in the Lateral, Medial, and Orbital Prefrontal Cortex in the Monkey. In: Watanabe, M. (eds) The Prefrontal Cortex as an Executive, Emotional, and Social Brain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56508-6_12

Download citation

Publish with us

Policies and ethics