Skip to main content

Protocols for Olfactory Conditioning Experiments

  • Chapter
  • First Online:
The Cricket as a Model Organism

Abstract

Insects have sophisticated learning abilities despite the relative simplicity of their central neural systems, which consist of small numbers of neurons as compared to vertebrates. Among insects, crickets (Gryllus bimaculatus) exhibit the most robust olfactory learning and memory. In this chapter, we describe protocols for classical conditioning and memory retention tests in crickets. Crickets are individually trained to associate an odor (conditioned stimulus) with water reward (appetitive unconditioned stimulus). To evaluate the effect of training, relative preference between the conditioned odor and a control odor is tested before and after training. We describe the methodology of olfactory conditioning in detail to help researchers who are interested in using crickets to study learning and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avarguès-Weber A, Deisig N, Giurfa M (2011) Visual cognition in social insects. Annu Rev Entomol 56:423–443

    Article  PubMed  Google Scholar 

  • Balderrama N (1980) One trial learning in the American cockroach, Periplaneta americana. J Insect Physiol 26:499–504

    Article  Google Scholar 

  • Bitterman ME, Menzel R, Fietz A, Schafer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97:107–119

    Article  CAS  PubMed  Google Scholar 

  • Daly KC, Smith BH (2000) Associative olfactory learning in the moth Manduca sexta. J Exp Biol 203:2025–2038

    CAS  PubMed  Google Scholar 

  • Dupuy F, Sandoz JC, Giurfa M, Josens R (2006) Individual olfactory learning in Camponotus ants. Anim Behav 72:1081–1091

    Article  Google Scholar 

  • Giurfa M (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comp Physiol A 193:801–824

    Article  Google Scholar 

  • Giurfa M, Sandoz JC (2012) Invertebrate learning and memory: fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn Mem 19:54–66

    Article  PubMed  Google Scholar 

  • Matsumoto Y, Mizunami M (2000) Olfactory learning in the cricket Gryllus bimaculatus. J Exp Biol 203:2581–2588

    Google Scholar 

  • Matsumoto Y, Mizunami M (2002a) Temporal determinants of olfactory long-term retention in the cricket Gryllus bimaculatus. J Exp Biol 205:1429–1437

    PubMed  Google Scholar 

  • Matsumoto Y, Mizunami M (2002b) Lifetime olfactory memory in the cricket Gryllus bimaculatus. J Comp Physiol A 188:295–299

    Article  CAS  Google Scholar 

  • Matsumoto Y, Mizunami M (2004) Context-dependent olfactory learning in an insect. Learn Mem 11:288–293

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto Y, Mizunami M (2005) Formation of long-term olfactory memory in the cricket Gryllus bimaculatus. Chem Senses 30(suppl 1):i299–i300

    Article  PubMed  Google Scholar 

  • Matsumoto Y, Mizunami M (2006) Olfactory memory capacity of the cricket Gryllus bimaculatus. Biol Lett 2:608–610

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto Y, Noji S, Mizunami M (2003) Time course of protein synthesis-dependent phase of olfactory memory in the cricket Gryllus bimaculatus. Zool Sci 20:409–416

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Unoki S, Aonuma H, Mizunami M (2006) Critical role of nitric oxide-cGMP cascade in the formation of cAMP-dependent long-term memory. Learn Mem 13:35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto Y, Hatano A, Unoki S, Mizunami M (2009) Stimulation of the cAMP system by the nitric oxide-cGMP system underlying the formation of long-term memory in an insect. Neurosci Lett 467:81–85

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Hirashima D, Mizunami M (2013a) Analysis and modeling of neural processes underlying sensory pre-conditioning. Neurobiol Learn Mem 101:103–113

    Article  PubMed  Google Scholar 

  • Matsumoto Y, Hirashima D, Terao K, Mizunami M (2013b) Roles of NO signaling in long-term memory formation in visual learning in an insect. PLoS One 8(7):e68538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menzel R (1999) Memory dynamics in the honeybee. J Comp Physiol A 185:323–340

    Article  Google Scholar 

  • Mizunami M, Yokohari F, Takahata M (2004) Further exploration into the adaptive design of the arthropod “microbrain”: I. Sensory and memory-processing systems. Zool Sci 21:1141–1151

    Article  PubMed  Google Scholar 

  • Mizunami M, Unoki S, Mori Y, Hirashima D, Hatano A, Matsumoto Y (2009) Roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in an insect. BMC Biol 7:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizunami M, Nemoto Y, Terao K, Hamanaka Y, Matsumoto Y (2014) Roles of calcium/calmodulin-dependent kinase II in long-term memory formation in crickets. PLoS One 9(9):e107442

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakatani Y, Matsumoto Y, Mori Y, Hirashima D, Nishino H, Arikawa K, Mizunami M (2009) Why the carrot is more effective than the stick: different dynamics of punishment memory and reward memory and its possible biological basis. Neurobiol Learn Mem 92:370–380

    Article  PubMed  Google Scholar 

  • Sandoz JC (2011) Behavioral and neurophysiological study of olfactory perception and learning in honeybees. Front Syst Neurosci 5:98. doi:10.3389/fnsys.2011.00098

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi T, Hamada A, Miyawaki K, Matsumoto Y, Mito T, Noji S, Mizunami M (2009) Systemic RNA interference for the study of learning and memory in an insect. J Neurosci Methods 179:9–15

    Article  CAS  PubMed  Google Scholar 

  • Terao K, Matsumoto Y, Mizunami M (2015) Conserved computational mechanisms underlying associative learning in insects and mammals. Sci Rep 5:8929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 157:263–277

    Article  CAS  PubMed  Google Scholar 

  • Unoki S, Matsumoto Y, Mizunami M (2005) Participation of octopaminergic reward system and dopaminergic punishment system in insect olfactory learning revealed by pharmacological study. Eur J Neurosci 22:1409–1416

    Article  PubMed  Google Scholar 

  • Unoki S, Matsumoto Y, Mizunami M (2006) Roles of octopaminergic and dopaminergic neurons in mediating reward and punishment signals in insect visual learning. Eur J Neurosci 24:2031–2038

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihisa Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Matsumoto, Y., Matsumoto, C.S., Mizunami, M. (2017). Protocols for Olfactory Conditioning Experiments. In: Horch, H., Mito, T., Popadić, A., Ohuchi, H., Noji, S. (eds) The Cricket as a Model Organism. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56478-2_17

Download citation

Publish with us

Policies and ethics