Skip to main content

Speciation and Identification of Chalcogen-Containing Metabolites

  • Chapter
  • First Online:
Metallomics

Abstract

Selenium (Se) and tellurium (Te) are chalcogen elements belonging to group 16 in the periodic table. These elements have unique physical, chemical, and biological properties. Se and Te form Se- or Te-containing compounds having Se- or Te-carbon covalent bond(s), i.e., selenometabolites or tellurometabolites, respectively, in their metabolic pathways. In this chapter, the speciation and identification of selenometabolites and tellurometabolites in animal and plant samples are highlighted. First, the instruments required for analyses are overviewed. In particular, hyphenated techniques consisting of high-performance liquid chromatography and inductively coupled plasma mass spectrometry or electrospray ionization (tandem) mass spectrometry are focused on. Then, newly identified metabolites are introduced. The identification of selenosugars in urine, selenohomolanthionine in Se-accumulating plants, selenoneine in marine animals, trimethyltelluronium ion in urine, Te-methyltellurocysteine in Se-accumulating plants, and selenocyanate in cultured cells is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Szpunar J, Łobiński R, Prange A (2003) Hyphenated techniques for elemental speciation in biological systems. Appl Spectrosc 57(3):102A–112A. doi:10.1366/000370203321558128

  2. Whanger PD (2002) Selenocompounds in plants and animals and their biological significance. J Am Coll Nutr 21:223–232

    Article  CAS  PubMed  Google Scholar 

  3. Suzuki KT, Ogra Y (2002) Metabolic pathway for selenium in the body: speciation by HPLC-ICP MS with enriched Se. Food Addit Contam 19 (10):974–983. doi:10.1080/02652030210153578

  4. Ogra Y (2008) Integrated strategies for identification of selenometabolites in animal and plant samples. Anal Bioanal Chem 390:1685–1689

    Article  CAS  PubMed  Google Scholar 

  5. Yamashita Y, Yamashita M (2010) Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna. J Biol Chem 285(24):18134–18138. doi:10.1074/jbc.C110.106377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kobayashi Y, Ogra Y, Ishiwata K, Takayama H, Aimi N, Suzuki KT (2002) Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range. Proc Natl Acad Sci U S A 99(25):15932–15936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ogra Y (2015) Selenohomolanthionine and its potential use in medicine and nutrition. In: Preedy VR (ed) Food and nutritional components in focus No. 9, Selenium: chemistry, analysis, function and effects. The Royal Society of Chemistry, London, pp 354–362

    Google Scholar 

  8. Anan Y, Mikami T, Tsuji Y, Ogra Y (2011) Distribution and metabolism of selenohomolanthionine labeled with a stable isotope. Anal Bioanal Chem 399(5):1765–1772. doi:10.1007/s00216-010-4143-4

    Article  CAS  PubMed  Google Scholar 

  9. Anan Y, Nakajima G, Ogra Y (2015) Complementary use of LC-ICP-MS and LC-ESI-Q-TOF-MS for selenium speciation. Anal Sci 31(6):561–564. doi:10.2116/analsci.31.561

    Article  CAS  PubMed  Google Scholar 

  10. Ogra Y, Kobayashi R, Ishiwata K, Suzuki KT (2007) Identification of urinary tellurium metabolite in rats administered sodium tellurite. J Anal At Spectrom 22:153–157

    Article  CAS  Google Scholar 

  11. Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284:723–727

    Article  CAS  PubMed  Google Scholar 

  12. Kinoshita N, Sueki K, Sasa K, Kitagawa J, Ikarashi S, Nishimura T, Wong YS, Satou Y, Handa K, Takahashi T, Sato M, Yamagata T (2011) Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan. Proc Natl Acad Sci U S A 108(49):19526–19529. doi:10.1073/pnas.1111724108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caruso J, Montes-Bayón M (2003) Elemental speciation studies – new directions for trace metal analysis. Ecotoxicol Environ Safety 56:148–163

    Article  CAS  PubMed  Google Scholar 

  14. Gammelgaard B, Grimstrup Madsen K, Bjerrum J, Bendahl L, Jøns O, Olsen J, Sidenius U (2003) Separation, purification and identification of the major selenium metabolite from human urine by multi-dimensional HPLC-ICP-MS and APCI-MS. J Anal At Spectrom 18:65–70

    Article  CAS  Google Scholar 

  15. Francesconi KA, Pannier F (2004) Selenium metabolites in urine: a critical overview of past work and current status. Clin Chem 50(12):2240–2253

    Article  CAS  PubMed  Google Scholar 

  16. Anan Y, Ishiwata K, Suzuki N, Tanabe S, Ogra Y (2011) Speciation and identification of low molecular weight selenium compounds in the liver of sea turtles. J Anal At Spectrom 26(1):80–85

    Article  CAS  Google Scholar 

  17. Ogra Y, Kobayashi R, Ishiwata K, Suzuki KT (2008) Comparison of distribution and metabolism between tellurium and selenium in rats. J Inorg Biochem 102(7):1507–1513. doi:S0162-0134(08)00041-X [pii] 10.1016/j.jinorgbio.2008.01.012

  18. Ogra Y, Ishiwata K, Ruiz-Encinar J, Łobinski R, Suzuki KT (2004) Speciation of selenium in selenium-enriched shiitake mushroom, Lentinula edodes. Anal Bioanal Chem 379:861–866

    Article  CAS  PubMed  Google Scholar 

  19. Cowgill UM (1988) The tellurium content of vegetation. Biol Trace Elem Res 17:43–67

    Article  CAS  PubMed  Google Scholar 

  20. Ogra Y, Kitaguchi T, Ishiwata K, Suzuki N, Iwashita Y, Suzuki KT (2007) Identification of selenohomolanthionine in selenium-enriched Japanese pungent radish. J Anal At Spectrom 22:1390–1396

    Article  CAS  Google Scholar 

  21. Djanaguiraman M, Durga Devi D, Shanker AK, Annie Sheeba J, Bangarusamy U (2005) Selenium – an antioxidative protectant in soybean during senescence. Plant Soil 272:77–86

    Article  CAS  Google Scholar 

  22. Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  CAS  PubMed  Google Scholar 

  23. Prange A, Pröfrock D (2005) Application of CE–ICP–MS and CE–ESI–MS in metalloproteomics: challenges, developments, and limitations. Anal Bioanal Chem 383:372–389

    Article  CAS  PubMed  Google Scholar 

  24. Ip C, Birringer M, Block E, Kotrebai M, Tyson JF, Uden PC, Lisk DJ (2000) Chemical speciation influences comparative activity of selenium-enriched garlic and yeast in mammary cancer prevention. J Agric Food Chem 48:2062–2070

    Article  CAS  PubMed  Google Scholar 

  25. Taylor A (1996) Biochemistry of tellurium. Biol Trace Elem Res 55:231–239

    Article  CAS  PubMed  Google Scholar 

  26. Ogra Y, Ishiwata K, Iwashita Y, Suzuki KT (2005) Simultaneous speciation of selenium and sulfur species in selenized odorless garlic (Allium sativum L. Shiro) and shallot (Allium ascalonicum) by HPLC–inductively coupled plasma-(octopole reaction system)-mass spectrometry and electrospray ionization-tandem mass spectrometry. J Chromatogr A 1093:118–125

    Article  CAS  PubMed  Google Scholar 

  27. Ravn-Haren G, Krath BN, Overvad K, Cold S, Moesgaard S, Larsen EH, Dragsted LO (2008) Effect of long-term selenium yeast intervention on activity and gene expression of antioxidant and xenobiotic metabolising enzymes in healthy elderly volunteers from the Danish Prevention of Cancer by Intervention by Selenium (PRECISE) pilot study. Br J Nutr 99(6):1190–1198. doi:S0007114507882948 [pii] 10.1017/S0007114507882948

  28. Reeves MA, Hoffmann PR (2009) The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci 66:2457–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reid ME, Duffield-Lillico AJ, Slate E, Natarajan N, Turnbull B, Jacobs E, Combs GF Jr, Alberts DS, Clark LC, Marshall JR (2008) The nutritional prevention of cancer: 400 mcg per day selenium treatment. Nutr Cancer 60(2):155–163, doi:791706363 [pii] 10.1080/01635580701684856

    Article  CAS  PubMed  Google Scholar 

  30. Bierla K, Szpunar J, Yiannikouris A, Lobinski R (2012) Comprehensive speciation of selenium in selenium-enriched yeast. Trends Anal Chem 41:122–132

    Article  CAS  Google Scholar 

  31. Burk RF, Hill KE (2005) Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu Rev Nutr 25:215–235. doi:10.1146/annurev.nutr.24.012003.132120

    Article  CAS  PubMed  Google Scholar 

  32. Foster LH, Sumar S (1997) Selenium in health and disease: a review. Crit Rev Food Sci Nutr 37(3):211–228

    Article  CAS  PubMed  Google Scholar 

  33. Mehta A, Rebsch CM, Kinzy SA, Fletcher JE, Copeland PR (2004) Efficiency of mammalian selenocysteine incorporation. J Biol Chem 279(36):37852–37859. doi:10.1074/jbc.M404639200 [doi] M404639200 [pii]

  34. Mounicou S, Szpunar J, Łobiński R (2009) Metallomics: the concept and technology. Chem Soc Rev 38:1119–1138

    Article  CAS  PubMed  Google Scholar 

  35. Szpunar J (2005) Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst 130:442–465

    Article  CAS  PubMed  Google Scholar 

  36. Francesconi KA, Pannier F (2004) Selenium metabolites in urine: a critical overview of past work and current status. Clin Chem 50:2240–2253

    Article  CAS  PubMed  Google Scholar 

  37. Freeman JL, Lindblom SD, Quinn CF, Fakra S, Marcus MA, Pilon-Smits EA (2007) Selenium accumulation protects plants from herbivory by Orthoptera via toxicity and deterrence. New Phytol 175:490–500

    Article  CAS  PubMed  Google Scholar 

  38. Squires JE, Berry MJ (2008) Eukaryotic selenoprotein synthesis: mechanistic insight incorporating new factors and new functions for old factors. IUBMB Life 60(4):232–235. doi:10.1002/iub.38

  39. Jager T, Drexler H, Goen T (2016) Human metabolism and renal excretion of selenium compounds after oral ingestion of sodium selenite and selenized yeast dependent on the trimethylselenium ion (TMSe) status. Arch Toxicol 90(5):1069–1080. doi:10.1007/s00204-015-1548-z

    Article  PubMed  Google Scholar 

  40. Yamashita M, Yamashita Y, Ando T, Wakamiya J, Akiba S (2013) Identification and determination of selenoneine, 2-selenyl-Na, Na, Na-trimethyl-L-histidine, as the major organic selenium in blood cells in a fish-eating population on remote Japanese Islands. Biol Trace Elem Res 156(1–3):36–44. doi:10.1007/s12011-013-9846-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kuehnelt D, Engstrom K, Skroder H, Kokarnig S, Schlebusch C, Kippler M, Alhamdow A, Nermell B, Francesconi K, Broberg K, Vahter M (2015) Selenium metabolism to the trimethylselenonium ion (TMSe) varies markedly because of polymorphisms in the indolethylamine N-methyltransferase gene. Am J Clin Nutr 102(6):1406–1415. doi:10.3945/ajcn.115.114157

    Article  CAS  PubMed  Google Scholar 

  42. Fairhill LT (1969) Tellurium, Industrial toxicology. Hafner Publishing Co., New York

    Google Scholar 

  43. Anan Y, Kimura M, Hayashi M, Koike R, Ogra Y (2015) Detoxification of selenite to form selenocyanate in mammalian cells. Chem Res Toxicol 28(9):1803–1814. doi:10.1021/acs.chemrestox.5b00254

    Article  CAS  PubMed  Google Scholar 

  44. Bock A, Flohe L, Kohrle J (2007) Selenoproteins – biochemistry and clinical relevance. Biol Chem 388(10):985–986. doi:10.1515/BC.2007.148

    Article  PubMed  Google Scholar 

  45. Falandysz J (2008) Selenium in edible mushrooms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 26:256–299

    Article  CAS  PubMed  Google Scholar 

  46. Byard JL (1969) Trimethyl selenide. A urinary metabolite of selenite. Arch Biochem Biophys 130:556–560

    Article  CAS  PubMed  Google Scholar 

  47. Anan Y, Yoshida M, Hasegawa S, Katai R, Tokumoto M, Ouerdane L, Lobinski R, Ogra Y (2013) Speciation and identification of tellurium-containing metabolites in garlic, Allium sativum. Metallomics Integr Biometal Sci 5(9):1215–1224. doi:10.1039/c3mt00108c

    Article  CAS  Google Scholar 

  48. Kuehnelt D, Juresa D, Kienzl N, Francesconi KA (2006) Marked individual variability in the levels of trimethylselenonium ion in human urine determined by HPLC/ICPMS and HPLC/vapor generation/ICPMS. Anal Bioanal Chem 386:2207–2212

    Article  CAS  PubMed  Google Scholar 

  49. Kraus RJ, Foster SJ, Ganther HE (1985) Analysis of trimethylselenonium ion in urine by high-performance liquid chromatography. Anal Biochem 147(2):432–436, doi:0003-2697(85)90293-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  50. Montes-Bayón M, Grant TD, Meija J, Caruso JA (2002) Selenium in plants by mass spectrometric techniques: developments in bio-analytical methods. J Anal At Spectrom 17:1015–1023

    Article  Google Scholar 

  51. Janghorbani M, Xia Y, Ha P, Whanger PD, Butler JA, Olesik JW, Daniels L (1999) Quantitative significance of measuring trimethylselenonium in urine for assessing chronically high intakes of selenium in human subjects. Br J Nutr 82(4):291–297, doi:S000711459900149X [pii]

    CAS  PubMed  Google Scholar 

  52. Klein M, Ouerdane L, Bueno M, Pannier F (2011) Identification in human urine and blood of a novel selenium metabolite, Se-methylselenoneine, a potential biomarker of metabolization in mammals of the naturally occurring selenoneine, by HPLC coupled to electrospray hybrid linear ion trap-orbital ion trap MS. Metallomics Integr Biometal Sci 3(5):513–520. doi:10.1039/c0mt00060d

    Article  CAS  Google Scholar 

  53. Becker JS, Jakubowski N (2009) The synergy of elemental and biomolecular mass spectrometry: new analytical strategies in life sciences. Chem Soc Rev 38:1969–1983

    Article  CAS  PubMed  Google Scholar 

  54. Templeton DM, Ariese F, Cornelis R, Danielsson L-G, Muntau H, van Leeuwen HP, Łobiński R (2000) Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC Recommendations 2000). Pure Appl Chem 72:1453–1470

    Article  CAS  Google Scholar 

  55. Szpunar J, Łobiński R (2002) Multidimensional approaches in biochemical speciation analysis. Anal Bioanal Chem 373:404–411

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by JSPS KAKENHI Grant Numbers 24659022, 26293030, 15K14991, and 16H05812, and a grant from the Food Safety Commission, Cabinet Office, Government of Japan (Research Program for Risk Assessment Study on Food Safety, No 1601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasumitsu Ogra Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Ogra, Y. (2017). Speciation and Identification of Chalcogen-Containing Metabolites. In: Ogra, Y., Hirata, T. (eds) Metallomics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56463-8_2

Download citation

Publish with us

Policies and ethics