Skip to main content

Introduction of a Nuclear Fusion Reactor

  • Chapter
  • First Online:
Tritium: Fuel of Fusion Reactors

Abstract

Most of energy resources on the earth are originated from energy given by the sun in which all energy is produced by nuclear fusion reactions. To build a small sun or to realize controlled fusion as an energy source on the earth has been a dream of human being. Owing to extensive research and development, the fusion reaction of Deuterium (D) and Tritium (T) soon comes in burning phase. Nevertheless, to realize a D–T fusion reactor as an energy source, lots of engineering issues still remain to be solved. Among all, T-relating issues are quite important, because T is hazardous due to its radioactivity and its resources are quite limited. In this chapter, after the introduction of nuclear fusion reactions, issues relating T to establish the D–T reactor as an energy source are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Hydrogen” generally represents all hydrogen isotopes which are referred as protium (H), deuterium (D) and tritium (T), and proton (p), deuteron (d) and triton (t) for respective ions.

References

  1. http://www.stanford.edu/~rhamerly/cgi-bin/Ph240/Ph240-2.php

  2. P. Clark Souers, Hydrogen Properties for Fusion Energy (University of California Press, California, 1986)

    Google Scholar 

  3. S. Atzeni, J. Meyer-ter-Vehn, The physics of inertial fusion beam plasma interaction, hydrodynamics, hot dense matter, Int. Ser. Monogr. Phys. 125 (2004)

    Google Scholar 

  4. T. Tanabe, Tritium fuel cycle in ITER and DEMO: issues in handling large amount of fuel. J. Nucl. Mater. 438, S19–S26 (2013)

    Article  Google Scholar 

  5. http://www.laetusinpraesens.org/iter/iter8.php

  6. J. Mlynar, Focus on: JET, EFD-R(07)01, p. 179 (2007)

    Google Scholar 

  7. D. Maisonnier, I. Cook, P. Sardain et al., DEMO and fusion power plant conceptual studies in Europe. Fusion Eng. Des. 81, 1123–1130 (2006)

    Article  Google Scholar 

  8. K. Tobita, S. Nishio, M. Enoeda, et al., Nucl. Fusion, 49, 075029 (10 pp) (2009)

    Google Scholar 

  9. http://www.lhd.nifs.ac.jp/en/

  10. A. Sagara, T. Goto, J. Miyazawa, N. Yanagi, T. Tanaka, H. Tamura, R. Sakamoto, M. Tanaka, K. Tsumori, O. Mitarai, S. Imagawa, T. Muroga, The FFHR design group, design activities on helical DEMO reactor FFHR-d1. Fusion Eng. Des. 87, 594–602 (2012)

    Article  Google Scholar 

  11. http://iter.rma.ac.be/en/physics/how2doit/Inertial/index.php

  12. https://lasers.llnl.gov/news/photons-fusion/2014/february

  13. D. Bodansky, Nuclear Energy, Principle, Practices, and Prospect (American Inst, Phys, 1996)

    Google Scholar 

  14. http://www.nfi.co.jp/e/product/prod02.html

  15. H. Stehile, J. Nucl. Mater. 153, 3–15 (1988)

    Article  Google Scholar 

  16. http://www.iaea.org/newscenter/focus/fukushima/

  17. http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/3mile-isle.html

  18. ICRP, The 2007 recommendations of the international commission on radiological protection. ICRP Publication 103. Ann ICRP 37, 2–4 (2007)

    Article  Google Scholar 

  19. M. Glugla, D.K. Murdoch, A. Antipenkov et al., Fusion Eng. Des. 81, 733 (2006). (references therein)

    Article  Google Scholar 

  20. DOE Handbook, Tritium Handling and Safety Storage, DOE-HDBK-1129-99, USDOE, March 1999

    Google Scholar 

  21. DOE Handbook, Radiological Training for Tritium Facilities, DOE-HDBK-1105-96, USDOE, Dec 1996

    Google Scholar 

  22. http://www.srs.gov/general/news/factsheets/tf.pdf

  23. T. Tanabe, Fusion Eng. Des. 87, 722–727 (2012)

    Article  Google Scholar 

  24. Technical basis for the ITER final design. Document series No. 24, IAEA, Vienna (2002)

    Google Scholar 

  25. D. Babineau, S. Maruyama, R. Pearce, M. Glugla, B. Li, B. Rogers, S. Willms, G. Piazza, T. Yamanishi, S.H. Yun, L. Worth, W. Shu, Review of the ITER fuel cycle, in Proceedings of 23rd IAEA Fusion Energy Conference, ITR/2-2, 11–16 Oct 2010

    Google Scholar 

  26. L. Cadwallader, T. Pinna, Reliability estimation for double containment piping, in Proceedings of 20th ANS Topical Meeting on the Technology of Fusion Energy, INL/CON-12-24848, Nasshville, TN, USA, 27–31 Aug 2012

    Google Scholar 

  27. R.A. Kerst, W.A. Swansiger, Plasma driven permeation of tritium in fusion reactors. J. Nucl. Mater. 122&123, 1499–1510 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Tanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Tanabe, T. (2017). Introduction of a Nuclear Fusion Reactor. In: Tanabe, T. (eds) Tritium: Fuel of Fusion Reactors . Springer, Tokyo. https://doi.org/10.1007/978-4-431-56460-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56460-7_1

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56458-4

  • Online ISBN: 978-4-431-56460-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics