Skip to main content

On the Interface Formation Model for Dynamic Triple Lines

  • Conference paper
  • First Online:
Mathematical Fluid Dynamics, Present and Future

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 183))

Abstract

This paper revisits the theory of Y. Shikhmurzaev on forming interfaces as a continuum thermodynamical model for dynamic triple lines. We start with the derivation of the balances for mass, momentum, energy and entropy in a three-phase fluid system with full interfacial physics, including a brief review of the relevant transport theorems on interfaces and triple lines. Employing the entropy principle in the form given in (Bothe and Dreyer (2015) Continuum thermodynamics of chemically reacting fluid mixtures. Acta Mech. 226, 1757–1805, [1]), but extended to this more general case, we arrive at the entropy production and perform a linear closure, except for a nonlinear closure for the sorption processes. Specialized to the isothermal case, we obtain a thermodynamically consistent mathematical model for dynamic triple lines and show that the total available energy is a strict Lyapunov function for this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bothe, D., Dreyer, W.: Continuum thermodynamics of chemically reacting fluid mixtures. Acta Mech. 226, 1757–1805 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blake, T.D.: The physics of moving wetting lines. J. Colloid Interface Sci. 299, 1–13 (2006)

    Article  Google Scholar 

  3. Bonn, D., Eggers, J., Indekeu, J., Meunier, J., Rolley, E.: Wetting and spreading. Rev. Modern Phys. 81, 739–805 (2009)

    Article  Google Scholar 

  4. Snoeijer, J.H., Andreotti, B.: Moving contact lines: scales regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269–292 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blake, T.D., Haynes, J.M.: Kinetics of liquid/liquid displacement. J. Colloid Interface Sci. 30, 421–423 (1969)

    Article  Google Scholar 

  6. De Gennes, P.-G.: Wetting: statics and dynamics. Rev. Modern Phys. 57, 827–863 (1985)

    Article  Google Scholar 

  7. Jacqmin, D.: Contact-line dynamics of a diffuse fluid interface. J. Colloid Interface Sci. 402, 57–88 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Huh, C., Scriven, L.E.: Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85–101 (1971)

    Article  Google Scholar 

  9. Dussan, E.B., Davis, V.S.H.: On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech. 65, 71–95 (1974)

    Article  MATH  Google Scholar 

  10. Pukhnachev, V.V., Solonnikov, V.A.: On the problem of dynamic contact angle. J. Appl. Math. Mech. 46, 771–779 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Solonnikov, V.A.: On some free boundary problems for the Navier-Stokes equations with moving contact points and lines. Math. Ann. 302, 743–772 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hoffman, R.L.: A study of the advancing interface. I. Interface shape in liquid/gas systems. J. Colloid Interface Sci. 50, 228–241 (1975)

    Article  Google Scholar 

  13. Tanner, L.H.: The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys. 12, 1473–1484 (1979)

    Article  Google Scholar 

  14. Jiang, T.-S., Oh, S.-G., Slattery, J.C.: Correlation for dynamic contact angle. J. Colloid Interface Sci. 69, 74–77 (1979)

    Article  Google Scholar 

  15. Cox, R.G.: The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169–194 (1986)

    Article  MATH  Google Scholar 

  16. Dussan, E.B.V.: The moving contact line: the slip boundary condition. J. Fluid Mech. 77, 665–684 (1976)

    Article  MATH  Google Scholar 

  17. Voinov, O.V.: Hydrodynamics of wetting. Fluid Dyn. 11, 714–721 (1976)

    Article  Google Scholar 

  18. Afkhami, S., Zaleski, S., Bussmann, M.: A mesh-dependent model for applying dynamic contact angles to VOF simulations. J. Comput. Phys. 228, 5370–5389 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fath, A., Bothe, D.: Direct Numerical Simulations of thermocapillary migration of a droplet attached to a solid wall. Int. J. Multiphase Flow 77, 209–221 (2015)

    Article  MathSciNet  Google Scholar 

  20. Chen, Q., Ramé, E., Garoff, S.: The velocity field near moving contact lines. J. Fluid Mech. 337, 49–66 (1997)

    Article  MathSciNet  Google Scholar 

  21. Blake, T.D., Bracke, M., Shikhmurzaev, Y.D.: Experimental evidence of nonlocal hydrodynamic influence on the dynamic contact angle. Phys. Fluids 11, 1995–2007 (1999)

    Article  MATH  Google Scholar 

  22. Shikhmurzaev, Y.D.: Capillary Flows with Forming Interfaces. Chapman & Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  23. Shikhmurzaev, Y.D.: The moving contact line on a smooth solid surface. Int. J. Multiphase Flow 19, 589–610 (1993)

    Article  MATH  Google Scholar 

  24. Billingham, J.: On a model for the motion of a contact line on a smooth solid surface. Eur. J. Appl. Math. 17, 347–382 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bedeaux, D.: Nonequilibrium thermodynamics and statistical physics of surfaces. In: Prigogine, I., Rice, S.A. (eds.) Advance in Chemical Physics, vol. 64, pp. 47–109. Jon Wiley & Sons (1986)

    Google Scholar 

  26. Bedeaux, D., Albano, A.M., Mazur, P.: Boundary conditions and non-equilibrium thermodynamics. Phys. A 82, 438–462 (1976)

    Article  MathSciNet  Google Scholar 

  27. Bedeaux, D.: Nonequilibrium thermodynamic description of the three-phase contact line. J. Chem. Phys. 120, 3744–3748 (2004)

    Article  Google Scholar 

  28. Slattery, J.C., Sagis, L., Oh, E.S.: Interfacial Transport Phenomena, 2nd edn. Springer, New York (2007)

    Google Scholar 

  29. Cermelli, P., Fried, E., Gurtin, M.E.: Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces. J. Fluid Mech. 544, 339–351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Romano, A., Marasco, A.: Continuum Mechanics—Advanced Topics and Research Trends. Modeling and Simulation in Science, Engineering and Technology (N. Bellomo, Series ed.). Birkhäuser, Boston (2010)

    Google Scholar 

  31. Alke, A., Bothe, D.: 3D numerical modelling of soluble surfactant at fluidic interfaces based on the Volume-of-Fluid method. Fluid Dyn. Mater. Process. 5, 345–372 (2009)

    Google Scholar 

  32. Prüss, J., Simonett, G.: Moving Interfaces and Quasilinear Parabolic Problems. Monographs in Mathematics, Birkhäuser (2016)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The first author (D.B.) is grateful for support by the DFG within the cluster of excellence “Center of Smart Interfaces”, TU Darmstadt. The second author (J.P.) thanks the DFG for continuous support in the framework of individual research projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Bothe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this paper

Cite this paper

Bothe, D., Prüss, J. (2016). On the Interface Formation Model for Dynamic Triple Lines. In: Shibata, Y., Suzuki, Y. (eds) Mathematical Fluid Dynamics, Present and Future. Springer Proceedings in Mathematics & Statistics, vol 183. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56457-7_2

Download citation

Publish with us

Policies and ethics