Skip to main content

The Role of Lysophospholipids in Immune Cell Trafficking and Inflammation

  • Chapter
  • First Online:
Chronic Inflammation

Abstract

Lysophospholipids are phospholipids that lack an acyl chain. Thus, they are less hydrophobic than diacyl phospholipids and can act as intercellular signaling molecules. Like cytokines, they are locally acting, short-lived molecules, which signal through specific cell-surface receptors. Accumulating evidence indicates that at least two of the lysophospholipids, namely sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), play critical roles in determining the spatial distribution of immune cells in lymphoid tissues. Both of these molecules act on lymphocytes, dendritic cells, and lymphoid tissue stromal cells, via specific G-protein–coupled receptors. Under physiological conditions, S1P regulates lymphocyte egress from lymphoid tissues, whereas LPA regulates lymphocyte ingress into and migration within lymph nodes. The aberrant production and/or metabolism of these lysophospholipids results in the dysregulated distribution of immune cells and the induction of various types of inflammatory responses in vivo. Here we discuss the specific roles of these lysophospholipids in immune cell trafficking and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvare SE, Harikuma KB, Hait NC et al (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465:1084–1088

    Article  Google Scholar 

  • Aoki J, Taira A, Takanezawa Y et al (2002) Serum lysophosphatidic acid is produced through diverse phospholipase pathways. J Biol Chem 277:48737–48744

    Article  CAS  PubMed  Google Scholar 

  • Bai Z, Cai L, Umemoto E et al (2013) Constitutive lymphocyte transmigration across the basal lamina of high endothelial venules is regulated by the autotaxin/lysophosphatidic acid axis. J Immunol 190:2036–2048

    Article  CAS  PubMed  Google Scholar 

  • Balazs L, Okolicany J, Ferrebee M et al (2001) Topical application of the phospholipid growth factor lysophosphatidic acid promotes wound healing in vivo. Am J Physiol Regul Integr Comp Physiol 280:R466–R472

    CAS  PubMed  Google Scholar 

  • Blaho VA, Hla T (2014) An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res 55:1596–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • BrĂ©art B, Ramos-Perez WD, Mendoza A et al (2011) Lipid phosphate phosphatase 3 enables efficient thymic egress. J Exp Med 208:1267–1278

    Article  PubMed  PubMed Central  Google Scholar 

  • Christoffersen C, Obinata H, Kumaraswamy SB et al (2011) Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci U S A 108:9613–9618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cyster JG, Schwab SR (2012) Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 30:69–94

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Zingarelli B, Harris V et al (2008) Lysophosphatidic acid inhibits bacterial endotoxin-induced pro-inflammatory response: potential anti-inflammatory signaling pathways. Mol Med 14:422–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuhara S, Simmons S, Kawamura S et al (2012) The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J Clin Invest 122:1416–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigorova IL, Panteleev M, Cyster JG et al (2010) Lymph node cortical sinus organization and relationship to lymphocyte egress dynamics and antigen exposure. Proc Natl Acad Sci U S A 107:20447–20452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hata E, Sasaki N, Takeda A, et al (2016) Lysophosphatidic acid receptors LPA4 and LPA6 differentially promote lymphocyte transmigration across high endothelial venules in lymph nodes. Int Immunol (in press)

    Google Scholar 

  • Hla T (2004) Physiological and pathological actions of sphingosine 1-phosphate. Semin Cell Dev Biol 15:513–520

    Article  CAS  PubMed  Google Scholar 

  • Jung B, Hla T (2013) Sphingosine 1-phosphate receptors. In: Chun J, Hla T, Moolenaar W, Spiegel S (eds) Lysophospholipid Receptors. Wiley, New York, pp 41–60

    Chapter  Google Scholar 

  • Kanda H, Newton R, Klein R et al (2008) Autotaxin, an ectoenzyme that produces lysophosphatidic acid, promotes the entry of lymphocytes into secondary lymphoid organs. Nat Immunol 9:415–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowlden SA, Capece T, Popovic M et al (2014) Regulation of T cell motility in vitro and in vivo by LPA and LPA2. PLoS One 9, e101655

    Article  PubMed  PubMed Central  Google Scholar 

  • Kono M, Tucker AE, Tran J et al (2014) Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo. J Clin Invest 124:2076–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunkel GT, Maceyka M, Milstien S et al (2013) Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov 12:688–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MJ, Jr VB, Thangada S et al (1998) Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279:1552–1555

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Deng J, Kujawski M et al (2010) STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nat Med 16:1421–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang J, Nagahashi M, Kim EY et al (2013) Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 23:107–120

    Article  CAS  PubMed  Google Scholar 

  • Maeda Y, Yagi H, Takemoto K et al (2014) S1P lyase in thymic perivascular spaces promotes egress of mature thymocytes via up-regulation of S1P receptor 1. Int Immunol 26:245–255

    Article  CAS  PubMed  Google Scholar 

  • Matloubian M, Lo CG, Cinamon G et al (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427:355–360

    Article  CAS  PubMed  Google Scholar 

  • Mendoza A, BrĂ©art B, Ramos-Perez WD et al (2012) The transporter Spns2 is required for secretion of lymph but not plasma sphingosine-1-phosphate. Cell Rep 2:1104–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirendil H, Lin M-E, Chun J (2013) Lysophosphatidic acid (LPA) receptor signaling. In: Chun J, Hla T, Moolenaar W, Spiegel S (eds) Lysophospholipid Receptors. Wiley, New York, pp p1–p39

    Chapter  Google Scholar 

  • Miyabe Y, Miyabe C, Iwai Y et al (2013) Necessity of lysophosphatidic acid receptor 1 for development of arthritis. Arthritis Rheum 65:2037–2047

    Article  CAS  PubMed  Google Scholar 

  • Miyabe Y, Miyabe C, Iwai Y et al (2014) Activation of fibroblast-like synoviocytes derived from rheumatoid arthritis via lysophosphatidic acid-lysophosphatidic acid receptor 1 cascade. Arthritis Res Ther 16:461–469

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizugishi K, Yamashita T, Olivera A et al (2005) Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25:11113–11121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakanaga K, Hama K, Aoki J (2010) Autotaxin–an LPA producing enzyme with diverse functions. J Biochem 148:13–24

    Article  CAS  PubMed  Google Scholar 

  • Nakasaki T, Tanaka T, Okudaira S et al (2008) Involvement of the lysophosphatidic acid-generating enzyme autotaxin in lymphocyte-endothelial cell interactions. Am J Pathol 173:1566–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieto-Posadas A, Picazo-Juarez G, Llorente I et al (2012) Lysophosphatidic acid directly activates TRPV1 through a C-terminal binding site. Nat Chem Biol 8:78–85

    Article  CAS  Google Scholar 

  • Nochi H, Tomura H, Tobo M et al (2008) Stimulatory role of lysophosphatidic acid in cyclooxygenase-2 induction by synovial fluid of patients with rheumatoid arthritis in fibroblast-like synovial cells. J Immunol 181:5111–5119

    Article  CAS  PubMed  Google Scholar 

  • Pabst O, Herbrand H, Willenzon S et al (2006) Enhanced FTY720-mediated lymphocyte homing requires Gαi signaling and depends on beta 2 and beta 7 integrin. J Immunol 176:1474–1480

    Article  CAS  PubMed  Google Scholar 

  • Pappu R, Schwab SR, Cornelissen I et al (2007) Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316:295–298

    Article  CAS  PubMed  Google Scholar 

  • Pham TH, Okada T, Matloubian M et al (2008) S1P1 receptor signaling overrides retention mediated by Gαi-coupled receptors to promote T cell egress. Immunity 28:122–133

    Article  CAS  PubMed  Google Scholar 

  • Pham TH, Baluk P, Xu Y et al (2010) Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J Exp Med 207:17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradère JP, Klein J, Gres S et al (2007) LPA1 receptor activation promotes renal interstitial fibrosis. J Am Soc Nephrol 18:3110–3118

    Article  PubMed  Google Scholar 

  • Rai V, Toure F, Chitayat S et al (2012) Lysophosphatidic acid targets vascular and oncogenic pathways via RAGE signaling. J Exp Med 209:2339–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen H, Goetzl EJ (2005) Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 5:560–570

    Article  CAS  PubMed  Google Scholar 

  • Schwab SR, Pereira JP, Matloubian M et al (2005) Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309:1735–1739

    Article  CAS  PubMed  Google Scholar 

  • Sevastou I, Kaffe E, Mouratis MA et al (2013) Lysoglycerophospholipids in chronic inflammatory disorders: the PLA2/LPC and ATX/LPA axes. Biochim Biophys Acta 1831:42–60

    Article  CAS  PubMed  Google Scholar 

  • Spiegel S, Merrill AH Jr (1996) Sphingolipid metabolism and cell growth regulation. FASEB J 10:1388–1397

    CAS  PubMed  Google Scholar 

  • Spiegel S, Milstien S (2011) The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol 11:403–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tager AM, LaCamera P, Shea BS et al (2008) The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med 14:45–54

    Article  CAS  PubMed  Google Scholar 

  • Takeda A, Kobayashi D, Aoi K et al (2016) Fibroblastic reticular cell-derived lysophosphatidic acid regulates confined intranodal T-cell motility. Elife 5, e10561

    Article  PubMed  PubMed Central  Google Scholar 

  • Venkataraman K, Lee YM, Michau J et al (2008) Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res 102:669–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia P, Gamble JR, Rye KA (1998) Tumor necrosis factor-α induces adhesion molecule expression through the sphingosine kinase pathway. Proc Natl Acad Sci U S A 95:14196–14201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yopp AC, Ochando JC, Mao M et al (2005) Sphingosine 1-phosphate receptors regulate chemokine-driven transendothelial migration of lymph node but not splenic T cells. J Immunol 175:2913–2924

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Baker DL, Yasuda S et al (2004) Lysophosphatidic acid induces neointima formation through PPARÎł activation. J Exp Med 199:763–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Chen YC, Krummel MF et al (2012) Autotaxin through lysophosphatidic acid stimulates polarization, motility, and transendothelial migration of naive T cells. J Immunol 189:3914–3924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Fernandes MJ, Prestwich GD et al (2008) Regulation of lysophosphatidic acid receptor expression and function in human synoviocytes: implications for rheumatoid arthritis? Mol Pharmacol 73:587–600

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Sardella A, Chun J et al (2011) TNF-alpha promotes LPA1- and LPA3-mediated recruitment of leukocytes in vivo through CXCR2 ligand chemokines. J Lipid Res 52:1307–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Miyasaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Miyasaka, M., Takeda, A., Hata, E., Sasaki, N., Umemoto, E., Jalkanen, S. (2016). The Role of Lysophospholipids in Immune Cell Trafficking and Inflammation. In: Miyasaka, M., Takatsu, K. (eds) Chronic Inflammation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56068-5_35

Download citation

Publish with us

Policies and ethics