Skip to main content

Cell Culture

  • Chapter
  • First Online:
Cell Therapy Against Cerebral Stroke
  • 611 Accesses

Abstract

Cell production under Good Manufacturing Practice (GMP) protocol is mandatory for the proper application of therapeutic cells in clinical settings. If cells are produced under GMP conditions, chemically defined conditions and a controlled environment would be ensured. However, such practices do not specify the use of animal-derived or xenogeneic recombinant supplements, which might raise some concern for clinical-grade cell preparations. At the very least, information of these materials should be provided to the patients treated with cell therapy to ensure proper understanding and informed assent. Therefore, in this chapter, the conventional cell culture methods employed for cell preparation (isolation, expansion, and/or derivation) are discussed, with a particular focus on each of the cell types employed in clinical trials of cell therapy against cerebral stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doeppner TR, Hermann DM. Stem cell-based treatments against stroke: observations from human proof-of-concept studies and considerations regarding clinical applicability. Front Cell Neurosci. 2014;8:357. doi:10.3389/fncel.2014.00357.

    PubMed  PubMed Central  Google Scholar 

  2. Abe K, Yamashita T, Takizawa S, Kuroda S, Kinouchi H, Kawahara N. Stem cell therapy for cerebral ischemia: from basic science to clinical applications. J Cereb Blood Flow Metab. 2012;32(7):1317–31. doi:10.1038/jcbfm.2011.187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stem Cell Therapies as an Emerging Paradigm in Stroke P. Stem Cell Therapies as an Emerging Paradigm in Stroke (STEPS): bridging basic and clinical science for cellular and neurogenic factor therapy in treating stroke. Stroke. 2009;40(2):510–5. doi:10.1161/STROKEAHA.108.526863.

    Article  Google Scholar 

  4. Savitz SI, Chopp M, Deans R, Carmichael T, Phinney D, Wechsler L, et al. Stem cell therapy as an emerging paradigm for stroke (STEPS) II. Stroke. 2011;42(3):825–9. doi:10.1161/STROKEAHA.110.601914.

    Article  PubMed  Google Scholar 

  5. Savitz SI, Cramer SC, Wechsler L, Consortium S. Stem cells as an emerging paradigm in stroke 3: enhancing the development of clinical trials. Stroke. 2014;45(2):634–9. doi:10.1161/STROKEAHA.113.003379.

    Article  PubMed  Google Scholar 

  6. Boltze J, Arnold A, Walczak P, Jolkkonen J, Cui L, Wagner DC. The dark side of the force – constraints and complications of cell therapies for stroke. Front Neurol. 2015;6:155. doi:10.3389/fneur.2015.00155.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen KG, Mallon BS, McKay RD, Robey PG. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell. 2014;14(1):13–26. doi:10.1016/j.stem.2013.12.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. George PM, Steinberg GK. Novel stroke therapeutics: unraveling stroke pathophysiology and its impact on clinical treatments. Neuron. 2015;87(2):297–309. doi:10.1016/j.neuron.2015.05.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY, et al. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28(6):1099–106. doi:10.1002/stem.430.

    Article  PubMed  Google Scholar 

  10. Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J, et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology. 2000;55(4):565–9.

    Article  CAS  PubMed  Google Scholar 

  11. Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 2005;57(6):874–82. doi:10.1002/ana.20501.

    Article  PubMed  Google Scholar 

  12. Kondziolka D, Steinberg GK, Wechsler L, Meltzer CC, Elder E, Gebel J, et al. Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg. 2005;103(1):38–45. doi:10.3171/jns.2005.103.1.0038.

    Article  PubMed  Google Scholar 

  13. Rabinovich SS, Seledtsov VI, Banul NV, Poveshchenko OV, Senyukov VV, Astrakov SV, et al. Cell therapy of brain stroke. Bull Exp Biol Med. 2005;139(1):126–8.

    Article  CAS  PubMed  Google Scholar 

  14. Savitz SI, Dinsmore J, Wu J, Henderson GV, Stieg P, Caplan LR. Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc Dis. 2005;20(2):101–7. doi:10.1159/000086518.

    Article  PubMed  Google Scholar 

  15. Suarez-Monteagudo C, Hernandez-Ramirez P, Alvarez-Gonzalez L, Garcia-Maeso I, de la Cuetara-Bernal K, Castillo-Diaz L, et al. Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restor Neurol Neurosci. 2009;27(3):151–61. doi:10.3233/RNN-2009-0483.

    PubMed  Google Scholar 

  16. Barbosa da Fonseca LM, Gutfilen B, Rosado de Castro PH, Battistella V, Goldenberg RC, Kasai-Brunswick T, et al. Migration and homing of bone-marrow mononuclear cells in chronic ischemic stroke after intra-arterial injection. Exp Neurol. 2010;221(1):122–8. doi:10.1016/j.expneurol.2009.10.010.

    Article  PubMed  Google Scholar 

  17. Battistella V, de Freitas GR, da Fonseca LM, Mercante D, Gutfilen B, Goldenberg RC, et al. Safety of autologous bone marrow mononuclear cell transplantation in patients with nonacute ischemic stroke. Regen Med. 2011;6(1):45–52. doi:10.2217/rme.10.97.

    Article  CAS  PubMed  Google Scholar 

  18. Bhasin A, Srivastava MV, Kumaran SS, Mohanty S, Bhatia R, Bose S, et al. Autologous mesenchymal stem cells in chronic stroke. Cerebrovasc Dis Extra. 2011;1(1):93–104. doi:10.1159/000333381.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, et al. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 2011;134(Pt 6):1790–807. doi:10.1093/brain/awr063.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Savitz SI, Misra V, Kasam M, Juneja H, Cox Jr CS, Alderman S, et al. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann Neurol. 2011;70(1):59–69. doi:10.1002/ana.22458.

    Article  PubMed  Google Scholar 

  21. Friedrich MA, Martins MP, Araujo MD, Klamt C, Vedolin L, Garicochea B, et al. Intra-arterial infusion of autologous bone marrow mononuclear cells in patients with moderate to severe middle cerebral artery acute ischemic stroke. Cell Transplant. 2012;21 Suppl 1:S13–21. doi:10.3727/096368912X612512.

    Article  PubMed  Google Scholar 

  22. Moniche F, Gonzalez A, Gonzalez-Marcos JR, Carmona M, Pinero P, Espigado I, et al. Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial. Stroke. 2012;43(8):2242–4. doi:10.1161/STROKEAHA.112.659409.

    Article  PubMed  Google Scholar 

  23. Prasad K, Mohanty S, Bhatia R, Srivastava MV, Garg A, Srivastava A, et al. Autologous intravenous bone marrow mononuclear cell therapy for patients with subacute ischaemic stroke: a pilot study. Indian J Med Res. 2012;136(2):221–8.

    PubMed  PubMed Central  Google Scholar 

  24. Bhasin A, Srivastava MV, Mohanty S, Bhatia R, Kumaran SS, Bose S. Stem cell therapy: a clinical trial of stroke. Clin Neurol Neurosurg. 2013;115(7):1003–8. doi:10.1016/j.clineuro.2012.10.015.

    Article  PubMed  Google Scholar 

  25. Rosado-de-Castro PH, Schmidt Fda R, Battistella V, Lopes de Souza SA, Gutfilen B, Goldenberg RC, et al. Biodistribution of bone marrow mononuclear cells after intra-arterial or intravenous transplantation in subacute stroke patients. Regen Med. 2013;8(2):145–55. doi:10.2217/rme.13.2.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang Y, Zhu W, Zhu J, Wu L, Xu G, Liu X. Feasibility of delivering mesenchymal stem cells via catheter to the proximal end of the lesion artery in patients with stroke in the territory of the middle cerebral artery. Cell Transplant. 2013;22(12):2291–8. doi:10.3727/096368912X658818.

    Article  PubMed  Google Scholar 

  27. Li ZM, Zhang ZT, Guo CJ, Geng FY, Qiang F, Wang LX. Autologous bone marrow mononuclear cell implantation for intracerebral hemorrhage-a prospective clinical observation. Clin Neurol Neurosurg. 2013;115(1):72–6. doi:10.1016/j.clineuro.2012.04.030.

    Article  PubMed  Google Scholar 

  28. Wang L, Ji H, Li M, Zhou J, Bai W, Zhong Z, et al. Intrathecal administration of autologous CD34 positive cells in patients with past cerebral infarction: a safety study. ISRN Neurol. 2013;2013:128591. doi:10.1155/2013/128591.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Prasad K, Sharma A, Garg A, Mohanty S, Bhatnagar S, Johri S, et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke. 2014;45(12):3618–24. doi:10.1161/STROKEAHA.114.007028.

    Article  CAS  PubMed  Google Scholar 

  30. Banerjee S, Bentley P, Hamady M, Marley S, Davis J, Shlebak A, et al. Intra-arterial immunoselected CD34+ stem cells for acute ischemic stroke. Stem Cells Transl Med. 2014;3(11):1322–30. doi:10.5966/sctm.2013-0178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen DC, Lin SZ, Fan JR, Lin CH, Lee W, Lin CC, et al. Intracerebral implantation of autologous peripheral blood stem cells in stroke patients: a randomized phase II study. Cell Transplant. 2014;23(12):1599–612. doi:10.3727/096368914X678562.

    PubMed  Google Scholar 

  32. Sharma A, Sane H, Gokulchandran N, Khopkar D, Paranjape A, Sundaram J, et al. Autologous bone marrow mononuclear cells intrathecal transplantation in chronic stroke. Stroke Res Treat. 2014;2014:234095. doi:10.1155/2014/234095.

    PubMed  PubMed Central  Google Scholar 

  33. Taguchi A, Sakai C, Soma T, Kasahara Y, Stern DM, Kajimoto K, et al. Intravenous autologous bone marrow mononuclear cell transplantation for stroke: phase1/2a clinical trial in a homogeneous group of stroke patients. Stem Cells Dev. 2015;24(19):2207–18. doi:10.1089/scd.2015.0160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Charbord P. Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther. 2010;21(9):1045–56. doi:10.1089/hum.2010.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roobrouck VD, Vanuytsel K, Verfaillie CM. Concise review: culture mediated changes in fate and/or potency of stem cells. Stem Cells. 2011;29(4):583–9. doi:10.1002/stem.603.

    Article  CAS  PubMed  Google Scholar 

  36. Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92(6):692–9. doi:10.1161/01.RES.0000063425.51108.8D.

    Article  CAS  PubMed  Google Scholar 

  37. Honma T, Honmou O, Iihoshi S, Harada K, Houkin K, Hamada H, et al. Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Exp Neurol. 2006;199(1):56–66. doi:10.1016/j.expneurol.2005.05.004.

    Article  CAS  PubMed  Google Scholar 

  38. Ishizaka S, Horie N, Satoh K, Fukuda Y, Nishida N, Nagata I. Intra-arterial cell transplantation provides timing-dependent cell distribution and functional recovery after stroke. Stroke. 2013;44(3):720–6. doi:10.1161/STROKEAHA.112.677328.

    Article  PubMed  Google Scholar 

  39. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther. 2005;11(1):96–104. doi:10.1016/j.ymthe.2004.09.020.

    Article  CAS  PubMed  Google Scholar 

  40. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, et al. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther. 2004;9(2):189–97. doi:10.1016/j.ymthe.2003.10.012.

    Article  CAS  PubMed  Google Scholar 

  41. Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, et al. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology. 2002;59(4):514–23.

    Article  CAS  PubMed  Google Scholar 

  42. Mitkari B, Kerkela E, Nystedt J, Korhonen M, Mikkonen V, Huhtala T, et al. Intra-arterial infusion of human bone marrow-derived mesenchymal stem cells results in transient localization in the brain after cerebral ischemia in rats. Exp Neurol. 2013;239:158–62. doi:10.1016/j.expneurol.2012.09.018.

    Article  CAS  PubMed  Google Scholar 

  43. Omori Y, Honmou O, Harada K, Suzuki J, Houkin K, Kocsis JD. Optimization of a therapeutic protocol for intravenous injection of human mesenchymal stem cells after cerebral ischemia in adult rats. Brain Res. 2008;1236:30–8. doi:10.1016/j.brainres.2008.07.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab. 2008;28(2):329–40. doi:10.1038/sj.jcbfm.9600527.

    Article  CAS  PubMed  Google Scholar 

  45. Sasaki M, Honmou O, Radtke C, Kocsis JD. Development of a middle cerebral artery occlusion model in the nonhuman primate and a safety study of i.v. infusion of human mesenchymal stem cells. PLoS ONE. 2011;6(10), e26577. doi:10.1371/journal.pone.0026577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seyfried D, Ding J, Han Y, Li Y, Chen J, Chopp M. Effects of intravenous administration of human bone marrow stromal cells after intracerebral hemorrhage in rats. J Neurosurg. 2006;104(2):313–8. doi:10.3171/jns.2006.104.2.313.

    Article  PubMed  Google Scholar 

  47. Seyfried DM, Han Y, Yang D, Ding J, Savant-Bhonsale S, Shukairy MS, et al. Mannitol enhances delivery of marrow stromal cells to the brain after experimental intracerebral hemorrhage. Brain Res. 2008;1224:12–9. doi:10.1016/j.brainres.2008.05.080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Steiner B, Roch M, Holtkamp N, Kurtz A. Systemically administered human bone marrow-derived mesenchymal stem home into peripheral organs but do not induce neuroprotective effects in the MCAo-mouse model for cerebral ischemia. Neurosci Lett. 2012;513(1):25–30. doi:10.1016/j.neulet.2012.01.078.

    Article  CAS  PubMed  Google Scholar 

  49. Sugiyama T, Kuroda S, Takeda Y, Nishio M, Ito M, Shichinohe H, et al. Therapeutic impact of human bone marrow stromal cells expanded by animal serum-free medium for cerebral infarct in rats. Neurosurgery. 2011;68(6):1733–42. doi:10.1227/NEU.0b013e31820edd63. discussion 42.

    Article  PubMed  Google Scholar 

  50. Toyama K, Honmou O, Harada K, Suzuki J, Houkin K, Hamada H, et al. Therapeutic benefits of angiogenetic gene-modified human mesenchymal stem cells after cerebral ischemia. Exp Neurol. 2009;216(1):47–55. doi:10.1016/j.expneurol.2008.11.010.

    Article  CAS  PubMed  Google Scholar 

  51. Ito M, Kuroda S, Sugiyama T, Shichinohe H, Takeda Y, Nishio M, et al. Validity of bone marrow stromal cell expansion by animal serum-free medium for cell transplantation therapy of cerebral infarct in rats-a serial MRI study. Transl Stroke Res. 2011;2(3):294–306. doi:10.1007/s12975-011-0098-9.

    Article  PubMed  Google Scholar 

  52. Shichinohe H, Kuroda S, Sugiyama T, Ito M, Kawabori M, Nishio M, et al. Biological features of Human Bone Marrow Stromal Cells (hBMSC) cultured with animal protein-free medium-safety and efficacy of clinical use for neurotransplantation. Transl Stroke Res. 2011;2(3):307–15. doi:10.1007/s12975-011-0088-y.

    Article  CAS  PubMed  Google Scholar 

  53. Lange C, Cakiroglu F, Spiess AN, Cappallo-Obermann H, Dierlamm J, Zander AR. Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol. 2007;213(1):18–26. doi:10.1002/jcp.21081.

    Article  CAS  PubMed  Google Scholar 

  54. Chase LG, Lakshmipathy U, Solchaga LA, Rao MS, Vemuri MC. A novel serum-free medium for the expansion of human mesenchymal stem cells. Stem Cell Res Ther. 2010;1(1):8. doi:10.1186/scrt8.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yamauchi T, Saito H, Ito M, Shichinohe H, Houkin K, Kuroda S. Platelet lysate and granulocyte-colony stimulating factor serve safe and accelerated expansion of human bone marrow stromal cells for stroke therapy. Transl Stroke Res. 2014;5(6):701–10. doi:10.1007/s12975-014-0360-z.

    Article  PubMed  Google Scholar 

  56. Kim SJ, Moon GJ, Chang WH, Kim YH, Bang OY, et al. Intravenous transplantation of mesenchymal stem cells preconditioned with early phase stroke serum: current evidence and study protocol for a randomized trial. Trials. 2013;14:317. doi:10.1186/1745-6215-14-317.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lane TA, Garls D, Mackintosh E, Kohli S, Cramer SC. Liquid storage of marrow stromal cells. Transfusion. 2009;49(7):1471–81. doi:10.1111/j.1537-2995.2009.02138.x.

    Article  CAS  PubMed  Google Scholar 

  58. Yasuhara T, Matsukawa N, Hara K, Maki M, Ali MM, Yu SJ, et al. Notch-induced rat and human bone marrow stromal cell grafts reduce ischemic cell loss and ameliorate behavioral deficits in chronic stroke animals. Stem Cells Dev. 2009;18(10):1501–14. doi:10.1089/scd.2009.0011.

    Article  CAS  PubMed  Google Scholar 

  59. Hess DC, Sila CA, Furlan AJ, Wechsler LR, Switzer JA, Mays RW. A double-blind placebo-controlled clinical evaluation of MultiStem for the treatment of ischemic stroke. Int J Stroke. 2014;9(3):381–6. doi:10.1111/ijs.12065.

    Article  PubMed  Google Scholar 

  60. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–9. doi:10.1038/nature00870.

    Article  CAS  PubMed  Google Scholar 

  61. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255(5052):1707–10.

    Article  CAS  PubMed  Google Scholar 

  62. Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol. 1996;175(1):1–13. doi:10.1006/dbio.1996.0090.

    Article  CAS  PubMed  Google Scholar 

  63. Chalmers-Redman RM, Priestley T, Kemp JA, Fine A. In vitro propagation and inducible differentiation of multipotential progenitor cells from human fetal brain. Neuroscience. 1997;76(4):1121–8.

    Article  CAS  PubMed  Google Scholar 

  64. Kukekov VG, Laywell ED, Suslov O, Davies K, Scheffler B, Thomas LB, et al. Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol. 1999;156(2):333–44. doi:10.1006/exnr.1999.7028.

    Article  CAS  PubMed  Google Scholar 

  65. Pollock K, Stroemer P, Patel S, Stevanato L, Hope A, Miljan E, et al. A conditionally immortal clonal stem cell line from human cortical neuroepithelium for the treatment of ischemic stroke. Exp Neurol. 2006;199(1):143–55. doi:10.1016/j.expneurol.2005.12.011.

    Article  PubMed  Google Scholar 

  66. Stevanato L, Sinden JD. The effects of microRNAs on human neural stem cell differentiation in two- and three-dimensional cultures. Stem Cell Res Ther. 2014;5(2):49. doi:10.1186/scrt437.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Daadi MM, Maag AL, Steinberg GK. Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS ONE. 2008;3(2), e1644. doi:10.1371/journal.pone.0001644.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Daadi MM, Steinberg GK. Manufacturing neurons from human embryonic stem cells: biological and regulatory aspects to develop a safe cellular product for stroke cell therapy. Regen Med. 2009;4(2):251–63. doi:10.2217/17460751.4.2.251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gelati M, Profico D, Projetti-Pensi M, Muzi G, Sgaravizzi G, Vescovi AL. Culturing and expansion of “clinical grade” precursors cells from the fetal human central nervous system. Methods Mol Biol. 2013;1059:65–77. doi:10.1007/978-1-62703-574-3_6.

    Article  PubMed  Google Scholar 

  70. Siebzehnrubl FA, Steindler DA. Isolating and culturing of precursor cells from the adult human brain. Methods Mol Biol. 2013;1059:79–86. doi:10.1007/978-1-62703-574-3_7.

    Article  PubMed  Google Scholar 

  71. Bauchet L, Lonjon N, Vachiery-Lahaye F, Boularan A, Privat A, Hugnot JP. Isolation and culture of precursor cells from the adult human spinal cord. Methods Mol Biol. 2013;1059:87–93. doi:10.1007/978-1-62703-574-3_8.

    Article  PubMed  Google Scholar 

  72. Malik N, Rao MS. A review of the methods for human iPSC derivation. Methods Mol Biol. 2013;997:23–33. doi:10.1007/978-1-62703-348-0_3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yamashita T, Abe K. Direct reprogrammed neuronal cells as a novel resource for cell transplantation therapy. Cell Transplant. 2014;23(4–5):435–9. doi:10.3727/096368914X678274.

    Article  PubMed  Google Scholar 

  74. Manley NC, Azevedo-Pereira RL, Bliss TM, Steinberg GK. Neural stem cells in stroke: intracerebral approaches. In: Hess DC, editor. Cell therapy for brain injury. Switzerland: Springer International Publishing; 2015. p. 91–110.

    Chapter  Google Scholar 

  75. Reynolds BA, Deleyrolle LP. Neural progenitor cells: methods and protocols, methods in molecular biology, vol. 1059. New York: Springer Science+Business Media; 2013. doi:10.1007/978-1-62703-574-3_1.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Ito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Ito, M., Houkin, K. (2017). Cell Culture. In: Houkin, K., Abe, K., Kuroda, S. (eds) Cell Therapy Against Cerebral Stroke. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56059-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56059-3_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56057-9

  • Online ISBN: 978-4-431-56059-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics