Skip to main content

Neural Stem Cells/Neuronal Progenitor Cells

  • Chapter
  • First Online:
Cell Therapy Against Cerebral Stroke
  • 582 Accesses

Abstract

Neural stem/progenitor cells (NSCs) are defined as cells with the potential for self-renewal and differentiation into neurons, astrocytes, and oligodendrocytes. These cells can be derived from several sources, including embryonic stem cells and fetal tissue. NSCs have been found to exist not only in the developing brain but also in the mature mammalian brain. NSCs were initially cultured as floating neurospheres in the presence of epidermal growth factor from adult and embryonic murine forebrain. Cell transplantation using these cells has evolved as a promising experimental treatment approach for stroke. Additionally, the activation of endogenous neural stem/progenitor cells has recently been employed for stroke treatment. This review provides an introduction to neural stem/progenitor cells and briefly describes some advances in neural stem cell transplantation for stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramon y Cajal S. Degeneration and regeneration of the nervous system. New York: Haffner Publishing Co; 1928. p. 2.

    Google Scholar 

  2. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255(5052):1707–10.

    Article  CAS  PubMed  Google Scholar 

  3. Reynolds BA, Tetzlaff W, Weiss S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci. 1992;12(11):4565–74.

    CAS  PubMed  Google Scholar 

  4. Weiss S, Reynolds BA, Vescovi AL, Morshead C, Craig CG, van der Kooy D. Is there a neural stem cell in the mammalian forebrain? Trends Neurosci. 1996;19(9):387–93.

    Article  CAS  PubMed  Google Scholar 

  5. Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70(4):687–702. doi:10.1016/j.neuron.2011.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aguirre A, Rubio ME, Gallo V. Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature. 2010;467(7313):323–7. doi:10.1038/nature09347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Andreu-Agullo C, Morante-Redolat JM, Delgado AC, Farinas I. Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nat Neurosci. 2009;12(12):1514–23. doi:10.1038/nn.2437.

    Article  CAS  PubMed  Google Scholar 

  8. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006;442(7104):823–6. doi:10.1038/nature04940.

    Article  CAS  PubMed  Google Scholar 

  9. Kawaguchi D, Furutachi S, Kawai H, Hozumi K, Gotoh Y. Dll1 maintains quiescence of adult neural stem cells and segregates asymmetrically during mitosis. Nat Commun. 2013;4:1880. doi:10.1038/ncomms2895.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bertrand N, Castro DS, Guillemot F. Proneural genes and the specification of neural cell types. Nat Rev Neurosci. 2002;3(7):517–30. doi:10.1038/nrn874.

    Article  CAS  PubMed  Google Scholar 

  11. Nieto M, Schuurmans C, Britz O, Guillemot F. Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron. 2001;29(2):401–13.

    Article  CAS  PubMed  Google Scholar 

  12. Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, et al. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell. 2001;104(3):365–76.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou Q, Anderson DJ. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell. 2002;109(1):61–73.

    Article  CAS  PubMed  Google Scholar 

  14. Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell. 2002;109(1):75–86.

    Article  CAS  PubMed  Google Scholar 

  15. Imayoshi I, Isomura A, Harima Y, Kawaguchi K, Kori H, Miyachi H, et al. Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science. 2013;342(6163):1203–8. doi:10.1126/science.1242366.

    Article  CAS  PubMed  Google Scholar 

  16. Nagao M, Campbell K, Burns K, Kuan CY, Trumpp A, Nakafuku M. Coordinated control of self-renewal and differentiation of neural stem cells by Myc and the p19ARF-p53 pathway. J Cell Biol. 2008;183(7):1243–57. doi:10.1083/jcb.200807130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kishi Y, Fujii Y, Hirabayashi Y, Gotoh Y. HMGA regulates the global chromatin state and neurogenic potential in neocortical precursor cells. Nat Neurosci. 2012;15(8):1127–33. doi:10.1038/nn.3165.

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi:10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  19. Kim SM, Flasskamp H, Hermann A, Arauzo-Bravo MJ, Lee SC, Lee SH, et al. Direct conversion of mouse fibroblasts into induced neural stem cells. Nat Protoc. 2014;9(4):871–81. doi:10.1038/nprot.2014.056.

    Article  CAS  PubMed  Google Scholar 

  20. Ruggieri M, Riboldi G, Brajkovic S, Bucchia M, Bresolin N, Comi GP, et al. Induced neural stem cells: methods of reprogramming and potential therapeutic applications. Prog Neurobiol. 2014;114:15–24. doi:10.1016/j.pneurobio.2013.11.001.

    Article  CAS  PubMed  Google Scholar 

  21. Horie N, So K, Moriya T, Kitagawa N, Tsutsumi K, Nagata I, et al. Effects of oxygen concentration on the proliferation and differentiation of mouse neural stem cells in vitro. Cell Mol Neurobiol. 2008;28(6):833–45. doi:10.1007/s10571-007-9237-y.

    Article  CAS  PubMed  Google Scholar 

  22. Morrison SJ, Csete M, Groves AK, Melega W, Wold B, Anderson DJ. Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J Neurosci. 2000;20(19):7370–6.

    CAS  PubMed  Google Scholar 

  23. Studer L, Csete M, Lee SH, Kabbani N, Walikonis J, Wold B, et al. Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci. 2000;20(19):7377–83.

    CAS  PubMed  Google Scholar 

  24. Shingo T, Sorokan ST, Shimazaki T, Weiss S. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci. 2001;21(24):9733–43.

    CAS  PubMed  Google Scholar 

  25. Horie N, Moriya T, Mitome M, Kitagawa N, Nagata I, Shinohara K. Lowered glucose suppressed the proliferation and increased the differentiation of murine neural stem cells in vitro. FEBS Lett. 2004;571(1–3):237–42. doi:10.1016/j.febslet.2004.06.085.

    Article  CAS  PubMed  Google Scholar 

  26. Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell. 2002;110(4):429–41.

    Article  CAS  PubMed  Google Scholar 

  27. Yoshikawa G, Momiyama T, Oya S, Takai K, Tanaka J, Higashiyama S, et al. Induction of striatal neurogenesis and generation of region-specific functional mature neurons after ischemia by growth factors. Laboratory investigation. J Neurosurg. 2010;113(4):835–50. doi:10.3171/2010.2.JNS09989.

    Article  PubMed  Google Scholar 

  28. Nakagomi T, Taguchi A, Fujimori Y, Saino O, Nakano-Doi A, Kubo S, et al. Isolation and characterization of neural stem/progenitor cells from post-stroke cerebral cortex in mice. Eur J Neurosci. 2009;29(9):1842–52. doi:10.1111/j.1460-9568.2009.06732.x.

    Article  PubMed  Google Scholar 

  29. Kokaia Z, Lindvall O. Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol. 2003;13(1):127–32.

    Article  CAS  PubMed  Google Scholar 

  30. Jin K, Wang X, Xie L, Mao XO, Greenberg DA. Transgenic ablation of doublecortin-expressing cells suppresses adult neurogenesis and worsens stroke outcome in mice. Proc Natl Acad Sci U S A. 2010;107(17):7993–8. doi:10.1073/pnas.1000154107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70. doi:10.1038/nm747.

    Article  CAS  PubMed  Google Scholar 

  32. Huang Y, Li Y, Chen J, Zhou H, Tan S. Electrical stimulation elicits neural stem cells activation: new perspectives in CNS repair. Front Hum Neurosci. 2015;9:586. doi:10.3389/fnhum.2015.00586.

    PubMed  PubMed Central  Google Scholar 

  33. Redmond Jr DE, Bjugstad KB, Teng YD, Ourednik V, Ourednik J, Wakeman DR, et al. Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci U S A. 2007;104(29):12175–80. doi:10.1073/pnas.0704091104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ryu JK, Kim J, Cho SJ, Hatori K, Nagai A, Choi HB, et al. Proactive transplantation of human neural stem cells prevents degeneration of striatal neurons in a rat model of Huntington disease. Neurobiol Dis. 2004;16(1):68–77. doi:10.1016/j.nbd.2004.01.016.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Q, Wu HH, Wang Y, Gu GJ, Zhang W, Xia R. Neural stem cell transplantation decreases neuroinflammation in a transgenic mouse model of Alzheimer’s disease. J Neurochem. 2015. doi:10.1111/jnc.13413.

    Google Scholar 

  36. Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature. 2003;422(6933):688–94. doi:10.1038/nature01552.

    Article  CAS  PubMed  Google Scholar 

  37. Feldman EL, Boulis NM, Hur J, Johe K, Rutkove SB, Federici T, et al. Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: phase 1 trial outcomes. Ann Neurol. 2014;75(3):363–73. doi:10.1002/ana.24113.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ziv Y, Avidan H, Pluchino S, Martino G, Schwartz M. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci U S A. 2006;103(35):13174–9. doi:10.1073/pnas.0603747103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bliss T, Guzman R, Daadi M, Steinberg GK. Cell transplantation therapy for stroke. Stroke. 2007;38:817–26.

    Article  PubMed  Google Scholar 

  40. De Feo D, Merlini A, Laterza C, Martino G. Neural stem cell transplantation in central nervous system disorders: from cell replacement to neuroprotection. Curr Opin Neurol. 2012;25(3):322–33. doi:10.1097/WCO.0b013e328352ec45.

    Article  PubMed  Google Scholar 

  41. Horie N, Hiu T, Nagata I. Stem cell transplantation enhances endogenous brain repair after experimental stroke. Neurol Med Chir. 2015;55(2):107–12. doi:10.2176/nmc.ra.2014-0271.

    Article  Google Scholar 

  42. Horie N, Pereira MP, Niizuma K, Sun G, Keren-Gill H, Encarnacion A, et al. Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cells. 2011;29(2):274–85. doi:10.1002/stem.584.

    Article  CAS  PubMed  Google Scholar 

  43. Bliss TM, Kelly S, Shah AK, Foo WC, Kohli P, Stokes C, et al. Transplantation of hNT neurons into the ischemic cortex: cell survival and effect on sensorimotor behavior. J Neurosci Res. 2006;83:1004–14.

    Article  CAS  PubMed  Google Scholar 

  44. Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A. 2004;101:11839–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A. 2004;101(52):18117–22. doi:10.1073/pnas.0408258102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seminatore C, Polentes J, Ellman D, Kozubenko N, Itier V, Tine S, et al. The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors. Stroke. 2010;41(1):153–9. doi:10.1161/STROKEAHA.109.563015.

    Article  PubMed  Google Scholar 

  47. Yan YP, Sailor KA, Lang BT, Park SW, Vemuganti R, Dempsey RJ. Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J Cereb Blood Flow Metab. 2007;27(6):1213–24. doi:10.1038/sj.jcbfm.9600432.

    Article  CAS  PubMed  Google Scholar 

  48. Krupinski J, Kaluza J, Kumar P, Wang M, Kumar S. Prognostic value of blood vessel density in ischaemic stroke. Lancet. 1993;342(8873):742.

    Article  CAS  PubMed  Google Scholar 

  49. Senior K. Angiogenesis and functional recovery demonstrated after minor stroke. Lancet. 2001;358(9284):817. doi:10.1016/S0140-6736(01)06014-7.

    CAS  PubMed  Google Scholar 

  50. Mine Y, Tatarishvili J, Oki K, Monni E, Kokaia Z, Lindvall O. Grafted human neural stem cells enhance several steps of endogenous neurogenesis and improve behavioral recovery after middle cerebral artery occlusion in rats. Neurobiol Dis. 2013;52:191–203. doi:10.1016/j.nbd.2012.12.006.

    Article  CAS  PubMed  Google Scholar 

  51. Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Davis Sanberg C, Sanberg PR, et al. Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol. 2006;199(1):191–200. doi:10.1016/j.expneurol.2006.03.017.

    Article  CAS  PubMed  Google Scholar 

  52. Pennypacker KR, Offner H. The role of the spleen in ischemic stroke. J Cereb Blood Flow Metab. 2015;35(2):186–7. doi:10.1038/jcbfm.2014.212.

    Article  PubMed  Google Scholar 

  53. Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, et al. Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain. 2008;131(Pt 3):616–29. doi:10.1093/brain/awm306.

    Article  PubMed  Google Scholar 

  54. Cao W, Yang Y, Wang Z, Liu A, Fang L, Wu F, et al. Leukemia inhibitory factor inhibits T helper 17 cell differentiation and confers treatment effects of neural progenitor cell therapy in autoimmune disease. Immunity. 2011;35(2):273–84. doi:10.1016/j.immuni.2011.06.011.

    Article  CAS  PubMed  Google Scholar 

  55. Carmichael ST. Themes and strategies for studying the biology of stroke recovery in the poststroke epoch. Stroke. 2008;39(4):1380–8. doi:10.1161/STROKEAHA.107.499962.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Carmichael ST, Wei L, Rovainen CM, Woolsey TA. New patterns of intracortical projections after focal cortical stroke. Neurobiol Dis. 2001;8(5):910–22. doi:10.1006/nbdi.2001.0425.

    Article  CAS  PubMed  Google Scholar 

  57. Andres RH, Horie N, Slikker W, Keren-Gill H, Zhan K, Sun G, et al. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain. 2011;134(Pt 6):1777–89. doi:10.1093/brain/awr094.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li Y, Chen J, Zhang CL, Wang L, Lu D, Katakowski M, et al. Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia. 2005;49(3):407–17. doi:10.1002/glia.20126.

    Article  PubMed  Google Scholar 

  59. Dijkhuizen RM, Singhal AB, Mandeville JB, Wu O, Halpern EF, Finklestein SP, et al. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J Neurosci. 2003;23(2):510–7.

    CAS  PubMed  Google Scholar 

  60. Takatsuru Y, Fukumoto D, Yoshitomo M, Nemoto T, Tsukada H, Nabekura J. Neuronal circuit remodeling in the contralateral cortical hemisphere during functional recovery from cerebral infarction. J Neurosci. 2009;29(32):10081–6. doi:10.1523/JNEUROSCI.1638-09.2009.

    Article  CAS  PubMed  Google Scholar 

  61. Gonzalez CL, Kolb B. A comparison of different models of stroke on behaviour and brain morphology. Eur J Neurosci. 2003;18(7):1950–62.

    Article  CAS  PubMed  Google Scholar 

  62. Jones TA, Schallert T. Overgrowth and pruning of dendrites in adult rats recovering from neocortical damage. Brain Res. 1992;581(1):156–60.

    Article  CAS  PubMed  Google Scholar 

  63. Liauw J, Hoang S, Choi M, Eroglu C, Choi M, Sun GH, et al. Thrombospondins 1 and 2 are necessary for synaptic plasticity and functional recovery after stroke. J Cereb Blood Flow Metab. 2008;28(10):1722–32. doi:10.1038/jcbfm.2008.65.

    Article  CAS  PubMed  Google Scholar 

  64. Gutierrez-Fernandez M, Rodriguez-Frutos B, Ramos-Cejudo J, Teresa Vallejo-Cremades M, Fuentes B, Cerdan S, et al. Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res Ther. 2013;4(1):11. doi:10.1186/scrt159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang L, Li Y, Zhang C, Chopp M, Gosiewska A, Hong K. Delayed administration of human umbilical tissue-derived cells improved neurological functional recovery in a rodent model of focal ischemia. Stroke. 2011;42(5):1437–44. doi:10.1161/STROKEAHA.110.593129.

    Article  PubMed  Google Scholar 

  66. Ding X, Li Y, Liu Z, Zhang J, Cui Y, Chen X, et al. The sonic hedgehog pathway mediates brain plasticity and subsequent functional recovery after bone marrow stromal cell treatment of stroke in mice. J Cereb Blood Flow Metab. 2013;33(7):1015–24. doi:10.1038/jcbfm.2013.50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Daadi MM, Lee SH, Arac A, Grueter BA, Bhatnagar R, Maag AL, et al. Functional engraftment of the medial ganglionic eminence cells in experimental stroke model. Cell Transplant. 2009;18(7):815–26. doi:10.3727/096368909X470829.

    Article  PubMed  Google Scholar 

  68. Nakagomi N, Nakagomi T, Kubo S, Nakano-Doi A, Saino O, Takata M, et al. Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells. 2009;27(9):2185–95. doi:10.1002/stem.161.

    Article  PubMed  Google Scholar 

  69. Hicks AU, Lappalainen RS, Narkilahti S, Suuronen R, Corbett D, Sivenius J, et al. Transplantation of human embryonic stem cell-derived neural precursor cells and enriched environment after cortical stroke in rats: cell survival and functional recovery. Eur J Neurosci. 2009;29(3):562–74. doi:10.1111/j.1460-9568.2008.06599.x.

    Article  PubMed  Google Scholar 

  70. Sakata H, Niizuma K, Yoshioka H, Kim GS, Jung JE, Katsu M, et al. Minocycline-preconditioned neural stem cells enhance neuroprotection after ischemic stroke in rats. J Neurosci. 2012;32(10):3462–73. doi:10.1523/JNEUROSCI.5686-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wakai T, Sakata H, Narasimhan P, Yoshioka H, Kinouchi H, Chan PH. Transplantation of neural stem cells that overexpress SOD1 enhances amelioration of intracerebral hemorrhage in mice. J Cereb Blood Flow Metab. 2014;34(3):441–9. doi:10.1038/jcbfm.2013.215.

    Article  CAS  PubMed  Google Scholar 

  72. Tang Y, Wang J, Lin X, Wang L, Shao B, Jin K, et al. Neural stem cell protects aged rat brain from ischemia-reperfusion injury through neurogenesis and angiogenesis. J Cereb Blood Flow Metab. 2014;34(7):1138–47. doi:10.1038/jcbfm.2014.61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hsieh JY, Wang HW, Chang SJ, Liao KH, Lee IH, Lin WS, et al. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS ONE. 2013;8(8), e72604. doi:10.1371/journal.pone.0072604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang P, Li J, Liu Y, Chen X, Lu H, Kang Q, et al. Human embryonic neural stem cell transplantation increases subventricular zone cell proliferation and promotes peri-infarct angiogenesis after focal cerebral ischemia. Neuropathology. 2011;31(4):384–91. doi:10.1111/j.1440-1789.2010.01182.x.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobutaka Horie M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Horie, N. (2017). Neural Stem Cells/Neuronal Progenitor Cells. In: Houkin, K., Abe, K., Kuroda, S. (eds) Cell Therapy Against Cerebral Stroke. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56059-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56059-3_3

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56057-9

  • Online ISBN: 978-4-431-56059-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics