Skip to main content

Integrating Estuarine, Coastal and Inner Shelf Sediment Systems in a Common Conceptual Framework as a Basis for Participatory Shoreline Management

  • Chapter
  • First Online:
Geomorphology and Society

Abstract

Coastal and estuarine margins are home to an increasing proportion of the global human population and its activities. Within this context, landforms play a critical role in mediating the translation of erosion and flood risk to human receptors in environmental settings that are vulnerable to the likely impacts of climate change. Predicting how coastal and estuarine landforms will evolve in response to changes in sea level and wave climate is thus of considerable importance. This is naturally a modelling problem but previous efforts have often failed to translate generic principles into models that do justice to the place-specific interactions between contemporary processes, antecedent geology, sea level history, historical morphology, engineering interventions and, not least, broader societal concerns. Progress clearly requires better models but, as we argue here, more sophisticated conceptual frameworks are also needed. Accordingly, we outline a new Coastal and Estuarine System Mapping (CESM) approach that captures the configuration of estuarine, coastal and inner shelf landform complexes within a unifying framework that also explicitly resolves the multitude of human interventions that influence shoreline change. An illustrative application to the Suffolk coast of eastern England demonstrates the potential of CESM to encourage a more participatory approach to regional shoreline management and the application of scientific understanding to the challenge of living with human and climate change impacts at the coast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ABPmer (2008) Development and demonstration of systems-based estuary simulators. R&D Technical Report FD2117/TR. Defra, London

    Google Scholar 

  • Allen JR (1981) Beach erosion as a function of variations in the sediment budget, Sandy Hook, New Jersey, USA. Earth Surf Proc Landf 6:139–150

    Article  Google Scholar 

  • Antia EE (1996) Rates and patterns of migration of shoreface-connected sandy ridges along the southern North Sea coast. J Coast Res 12:38–46

    Google Scholar 

  • Barnard PL (2013) Sediment transport patterns in the San Francisco Bay Coastal System from cross-validation of bedform asymmetry and modeled residual flux. Mar Geol 345:72–95

    Article  Google Scholar 

  • Barnard PL, Hubbard DM, Dugan JE (2012) Beach response dynamics of a littoral cell using a 17-year single-point time series of sand thickness. Geomorphology 139–140:588–598

    Article  Google Scholar 

  • Basco DR (2006) Seawall impacts on adjacent beaches: separating fact and fiction. J Coast Res 39:741–744

    Google Scholar 

  • Batten BK, Blanton B, Taylor S, Plummer J (2015) Modeling the influence of sea level rise on future storm surge elevations considering landscape evolution. In: Wang P, Rosati JD, Cheng J (eds) Proceedings Coastal Sediments 2015, World Scientific, New Jersey, 15pp

    Google Scholar 

  • Belderson RH (1986) Offshore tidal and non-tidal sand ridges and sheets: differences in morphology and hydrodynamic setting. In: Knight RJ, McLean JR (eds) Shelf sands and sandstones. Canadian Society of Petroleum Geologists. Memoir II, pp 293–301

    Google Scholar 

  • Bernatchez P, Fraser C (2012) Coastal defence structures and consequences for beach width trends, Quebec, Canada. J Coast Res 28:1550–1566

    Article  Google Scholar 

  • Bowen AJ, Inman DL (1966) Budget of littoral sands in the vicinity of Point Arguello, California. US Army Coastal Engineering Research Center Technical Memorandum 19, 41pp

    Google Scholar 

  • Bray MJ (1997) Episodic shingle supply and the modified development of Chesil Beach, England. J Coast Res 4:1035–1049

    Google Scholar 

  • Bray MJ, Carter DJ, Hooke JM (1995) Littoral cell definition and budgets for central southern England. J Coast Res 11:381–400

    Google Scholar 

  • Brooks SM, Spencer T (2014) Importance of decadal scale variability in shoreline response: examples from soft rock cliffs, East Anglian coast, UK. J Coast Conserv 18:581–593

    Article  Google Scholar 

  • Browder AG, McNinch JE (2006) Linking framework geology and nearshore morphology: correlation of paleo-channels with shore-oblique sandbars and gravel outcrops. Mar Geol 231:141–162

    Article  Google Scholar 

  • Brown S, Barton M, Nicholls R (2011) Coastal retreat and/or advance adjacent to defences in England and Wales. J Coast Conserv 15:659–670

    Article  Google Scholar 

  • Brown S, Nicholls RJ, Hanson S et al (2014) Shifting perspectives on coastal impacts and adaptation. Nat Clim Chang 4:752–755

    Article  Google Scholar 

  • Brown J, Amoudry LO, Souza AJ, Plater AJ (2015) Residual circulation modelled and the national UK scale to inform coastal evolution models. In: Wang P, Rosati JD, Cheng J (eds) Proceedings Coastal Sediments 2015, World Scientific, New Jersey, 15pp

    Google Scholar 

  • Burgess KA, Jay H, Hosking A (2002) FUTURECOAST: predicting the future coastal evolution of England and Wales. In: EURCOAST (ed) Proceedings Littoral 2002, EUCC/EURCOAST, pp 295–301

    Google Scholar 

  • Burgess KA, Jay H, Hosking A (2004) FutureCoast: predicting the future coastal evolution of England and Wales. J Coast Conserv 10:65–71

    Article  Google Scholar 

  • Burningham H (2015) Gravel spit-inlet dynamics: Orford Spit, UK. In: Randazzo G, Cooper JAG, Jackson D (eds) Sand and gravel spits. Coastal Research Library, vol 12, Springer 300p

    Google Scholar 

  • Burningham H, French JR (2006) Morphodynamic behaviour of a mixed sand-gravel ebb-tidal delta: Deben estuary, Suffolk, UK. Mar Geol 225:23–44

    Article  Google Scholar 

  • Burningham H, French JR (2007) Morphodynamics and sedimentology of mixed-sediment inlets. J Coast Res SI 50:710–715

    Google Scholar 

  • Burningham H, French JR (2011) Seabed morphodynamics in a large coastal embayment: 180 years of change in the Greater Thames estuary. Hydrobiologia 672:105–119

    Article  Google Scholar 

  • Burningham H, French JR (2015) Large-scale spatial variability in the contemporary coastal sand and gravel resource, Suffolk, eastern UK. In: Wang P, Rosati JD, Cheng J (eds) Proceedings Coastal Sediments 2015, World Scientific, New Jersey, 15pp

    Google Scholar 

  • Cañas AJ, Carff R, Hill G et al (2005) Concept maps: integrating knowledge and information visualization. In: Tergan SO, Keller T (eds) Knowledge and information visualization: searching for synergies, Lecture notes in computer science 3426. Springer, New York, pp 205–219

    Chapter  Google Scholar 

  • Castedo R (2012) A new process–response coastal recession model of soft rock cliffs. Geomorphology 177–178:128–143

    Article  Google Scholar 

  • Caston VND (1972) Linear sand banks in the southern North Sea. Sedimentology 18:63–78

    Article  Google Scholar 

  • Chang S-C, Evans G (1992) Source of sediment and sediment transport on the east coast of England: significant or coincidental phenomena? Mar Geol 107:283–288

    Article  Google Scholar 

  • Charlier RH, Chaineux MCP, Morcos S (2011) Panorama of the history of coastal protection. J Coast Res 21:79–111

    Google Scholar 

  • Chini N, Stansby P, Leake J et al (2010) The impact of sea level rise and climate change on inshore wave climate: a case study for East Anglia (UK). Coast Eng 57:973–984

    Article  Google Scholar 

  • Clayton KM (1989) Sediment input from the Norfolk cliffs, eastern England – a century of coast protection and its effect. J Coast Res 5:433–442

    Google Scholar 

  • Cooper NJ, Pethick JS (2005) Sediment budget approach to addressing coastal erosion problems in St. Ouen’s Bay, Jersey, Channel Islands. J Coast Res 21:112–122

    Article  Google Scholar 

  • Cooper NJ, Pontee NI (2006) Appraisal and evolution of the littoral ‘sediment cell’ concept in applied coastal management: experiences from England and Wales. Ocean Coast Manag 49:498–510

    Article  Google Scholar 

  • Cowell PJ, Thom BG (1994) Morphodynamics of coastal evolution. In: Carter RWG, Woodroffe CD (eds) Coastal evolution: late Quaternary shoreline morphodynamics. Cambridge University Press, Cambridge, pp 33–86

    Google Scholar 

  • Cowell PJ, Stive MJF, Niedoroda AW et al (2003) The coastal-tract (Part 1): a conceptual approach to aggregated modeling to lower-order coastal change. J Coast Res 19:812–827

    Google Scholar 

  • Dastgheib A, Roelvink JA, Wang ZB (2008) Long- term process-based morphological modeling of the Marsdiep Tidal Basin. Mar Geol 256:90–100

    Article  Google Scholar 

  • Davidson NC, Buck AL (1997) An inventory of UK estuaries. In: Introduction and methodology, vol 1 Joint Nature Conservation Committee, Peterborough, UK, 46pp

    Google Scholar 

  • Davies JL (1974) The coastal sediment compartment. Aust Geogr Stud 12:139–151

    Article  Google Scholar 

  • Dawson RJ, Dickson ME, Nicholls RJ et al (2009) Integrated analysis of risks of coastal flooding and cliff erosion under scenarios of long term change. Clim Chang 95:249–284

    Article  Google Scholar 

  • Dolphin TJ, Vincent CE, Coughlan C et al (2007) Variability in sandbank behaviour at decadal and annual time-scales and implications for adjacent beaches. J Coast Res 50:731–737

    Google Scholar 

  • Dronkers J, Van Alphen JSLJ, Borst JC (1990) Suspended sediment transport processes in the southern North Sea. In: Cheng RT (ed) Residual currents and long-term transport, vol 38, Coastal and Estuarine Studies. Springer-Verlag, New York, pp 302–320

    Chapter  Google Scholar 

  • Dyer KR, Huntley DA (1999) The origin, classification and modelling of sand banks and ridges. Cont Shelf Res 18:1311–1131

    Article  Google Scholar 

  • Dyer KR, Moffat TJ (1998) Fluxes of suspended matter in the East Anglian plume, southern North Sea. Cont Shelf Res 19:1285–1330

    Article  Google Scholar 

  • Fagherazzi S, Wiberg PL (2009) Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow intertidal basins. J Geophys Res 114:F03022

    Article  Google Scholar 

  • Fenster MS, Dolan R (1993) Historical shoreline trends along the Outer Banks, North Carolina: processes and responses. J Coast Res 9:172–188

    Google Scholar 

  • French JR (2008) Hydrodynamic modelling of estuarine flood defence realignment as an adaptive response to sea-level rise. J Coast Res 24(2B):1–12

    Article  Google Scholar 

  • French JR, Burningham H (2009) Mapping the connectivity of large scale coastal geomorphological systems: coastal system mapping with CmapTools tutorial. Science Report – SC060074/PR2. Bristol, Environment Agency, 25pp

    Google Scholar 

  • French JR, Burningham H (2013) Coasts and climate: insights from geomorphology. Prog Phys Geogr 37:550–561

    Article  Google Scholar 

  • French JR, Burningham H (2015) Wave-driven sediment pathways on a gravel-dominated coast subject to a strongly bi-modal wave climate. In: Wang P, Rosati JD, Cheng J (eds) Proceedings Coastal Sediments 2015, World Scientific, New Jersey, 15pp

    Google Scholar 

  • French JR, Benson T, Burningham H (2008) Tidal and meteorological forcing of suspended sediment flux in a muddy mesotidal estuary. Estuar Coast 31:843–859

    Article  Google Scholar 

  • French JR, Burningham H, Thornhill G et al (2016a) Conceptualizing and mapping coupled estuary, coast and inner shelf sediment systems. Geomorphology 256:17–35

    Google Scholar 

  • French JR, Payo A, Murray AB et al (2016b) Appropriate complexity for the prediction of coastal and estuarine geomorphic behaviour at decadal to centennial scales. Geomorphology 256:3–16

    Google Scholar 

  • Funnell BM, Boomer I, Jones R (2000) Holocene evolution of the Blakeney Spit area of the Norfolk coastline. Proc Geol Assoc 111:205–217

    Article  Google Scholar 

  • Gelbaum G, Kaminsky GM (2010) Large-scale coastal change in the Columbia River littoral cell: an overview. Mar Geol 273:1–10

    Article  Google Scholar 

  • Gerritsen H, Vos RJ, van der Kaaij T et al (2000) Suspended sediment modelling in a shelf sea (North Sea). Coast Eng 41:317–352

    Article  Google Scholar 

  • Gray SRJ, Gagnon AS, Gray SA et al (2014) Are coastal managers detecting the problems? Assessing stakeholder perception of climatic vulnerability using Fuzzy Cognitive Mapping. Ocean Coast Manag 94:74–89

    Article  Google Scholar 

  • Gruber TR (1993) A translation approach to portable ontology specifications. Knowl Aquis 5:199–220

    Article  Google Scholar 

  • Hall DM, Lazarus ED, Swannack TM (2014) Strategies for communicating systems models. Environ Model Softw 55:70–76

    Article  Google Scholar 

  • Hanley ME, Hoggart SPG, Simmonds DJ et al (2014) Shifting sands? Coastal protection by sand banks, beaches and dunes. Coast Eng 87:136–146

    Article  Google Scholar 

  • Hanson S, Nicholls RJ, Balson P et al (2010) Capturing coastal geomorphological change within regional integrated assessment: an outcome-driven fuzzy logic approach. J Coast Res 26:831–842

    Article  Google Scholar 

  • Hapke CJ, Lentz EA, Gaye PT et al (2010) A review of sediment budget imbalances along Fire Island, New York: can nearshore geologic framework and patterns of shoreline change explain the deficit? J Coast Res 26:510–522

    Article  Google Scholar 

  • Hapke CJ, Kratzmann MG, Himmelstoss EA (2013) Geomorphic and human influence on large-scale coastal change. Geomorphology 199:160–170

    Article  Google Scholar 

  • Harpham Q, Cleverley P, Kelly D (2014) The FluidEarth 2 implementation of OpenMI 2.0. J Hydroinformatics 16:890–906

    Article  Google Scholar 

  • Harris MS, Sautter LR, Johnson KL et al (2013) Continental shelf landscapes of the southeastern United States since the last interglacial. Geomorphology 203:6–24

    Article  Google Scholar 

  • Hequette A, Aernouts D (2010) The influence of nearshore sand bank dynamics on shoreline evolution in a macrotidal environment, Calais, northern France. Cont Shelf Res 30:1349–1361

    Article  Google Scholar 

  • Hequette A, Hemdane Y, Anthony E (2008) Sediment transport under wave and current combined flows on a tide dominated shoreface, northern coast of France. Mar Geol 249:226–242

    Article  Google Scholar 

  • Hibma A, Schuttelaars HM, de Vriend HJ (2004) Initial formation and long term evolution of channel-shoal patterns. Cont Shelf Res 24:1637–1650

    Article  Google Scholar 

  • Hinkel J, Linke D, Vafeidis AT, Perrette M, Nicholls RJ, Tol RSJ, Marzeion B, Fettweis X, Ionescu C, Levermann A (2014) Coastal flood damage and adaptation costs under 21st century sea-level rise. PNAS 111:3292–3297

    Article  Google Scholar 

  • Hitchcock DR, Bell S (2004) Physical impacts of marine aggregate dredging on seabed resources in coastal deposits. J Coast Res 20:101–114

    Article  Google Scholar 

  • Hsu J, Yu MJ, Lee FC, Benedet L (2010) Static bay beach concept for scientists and engineers: a review. Coast Eng 57:76–91

    Article  Google Scholar 

  • Huang ZG, Zong YQ, Zhang WQ (2004) Coastal inundation due to sea level rise in the Pearl River Delta, China. Nat Hazards 33:247–264

    Article  Google Scholar 

  • Hume TM, Herdendorf CE (1988) A geomorphic classification of estuaries and its application to coastal resource management – a New Zealand example. J Ocean Shore Manag 11:249–274

    Article  Google Scholar 

  • Hume TM, Snelder T, Weatherhead M et al (2007) A controlling factor approach to estuary classification. Ocean Coast Manag 50:905–929

    Article  Google Scholar 

  • Hunt S, Guthrie G, Cooper N et al (2011) Estuaries and shoreline management plans – lessons learned from round 2. Proceedings Littoral 2010, London. EDP Sciences 06003, pp 1–8. doi:10.1051/litt/201106003

  • Inman DL, Frautschy JD (1966) Littoral processes and the development of shorelines. In: Proceedings of the Coastal Engineering Speciality Conference, Santa Barbara, California. American Society of Civil Engineers, p511–536

    Google Scholar 

  • Kana TW (1995) A meso-scale sediment budget for Long Island, New York. Mar Geol 126:87–110

    Article  Google Scholar 

  • Keen TR, Slingerland RL (2006) Potential transport pathways of terrigenous material in the Gulf of Papua. Geophys Res Lett 33:L04608

    Google Scholar 

  • Khalil SM, Finkl CW, Roberts HH (2010) New approaches to sediment management on the inner continental shelf offshore coastal Louisiana. J Coast Res 26:591–604

    Article  Google Scholar 

  • Kirby R (1987) Sediment exchanges across the coastal margins of NW Europe. J Geol Soc 144:121–126

    Article  Google Scholar 

  • Kirwan ML, Guntenspergen GR, D’Alpaos A et al (2010) Limits on the adaptability of coastal marshes to rising sea level. Geophys Res Lett 37:L23401

    Article  Google Scholar 

  • Komar PD (1996) The budget of littoral sediments: concepts and applications. Shore Beach 64:18–26

    Google Scholar 

  • Komar PD (2010) Shoreline evolution and management of Hawke’s Bay, New Zealand: tectonics, coastal processes and human impacts. J Coast Res 26:143–156

    Article  Google Scholar 

  • Kragtwijk N, Zitman T, Stive M et al (2004) Morphological response of tidal basins to human interventions. Coast Eng 51:207–221

    Article  Google Scholar 

  • Kron W (2013) Coasts: the high-risk areas of the world. Nat Hazard 66:1363–1382

    Article  Google Scholar 

  • Leafe R, Pethick J, Townend I (1998) Realizing the benefits of shoreline management. Geogr J 164:282–290

    Article  Google Scholar 

  • Lichter M, Vafeidis AT, Nicholls RJ et al (2011) Exploring data-related uncertainties in analyses of land area and population in the ‘Low-Elevation Coastal Zone’ (LECZ). J Coast Res 27:757–768

    Article  Google Scholar 

  • Luo S, Cai F, Liu H et al (2015) Adaptive measures adopted for risk reduction of coastal erosion in the People’s Republic of China. Ocean Coast Manag 103:134–145

    Article  Google Scholar 

  • MacDonald N, O’Connor B (1994) Influence of offshore banks on the adjacent coast. Coast Eng Proc 1:492–504

    Google Scholar 

  • McCave IN (1987) Fine sediment sources and sinks around the East Anglian Coast (UK). J Geol Soc 144:149–152

    Article  Google Scholar 

  • McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Env Urban 19:17–37

    Article  Google Scholar 

  • McNinch JE (2004) Geologic control in the nearshore: shore-oblique sandbars and shoreline erosion hotspots, Mid-Atlantic Bight, USA. Mar Geol 211:121–141

    Article  Google Scholar 

  • Motyka JM, Brampton AH (1993) Coastal management: mapping of littoral cells. Hydraulics Research Ltd, Wallingford, UK, Wallingford Report SR 328, 102pp

    Google Scholar 

  • Mulder JPM, Hommes S, Horstman EM (2011) Implementation of coastal erosion management in the Netherlands. Ocean Coast Manag 54:888–897

    Article  Google Scholar 

  • Murray AB, Lazarus E, Ashton A et al (2008) Geomorphology, complexity, and the emerging science of the Earth’s surface. Geomorphology 103:496–505

    Article  Google Scholar 

  • Narayan S, Hanson S, Nicholls RJ et al (2012) A holistic model for coastal flooding using system diagrams and the source-pathway-receptor (SPR) concept. Nat Hazard Earth Syst Sci 12:1431–1439

    Article  Google Scholar 

  • Nicholls RJ (2011) Planning for the impacts of sea level rise. Oceanography 24:144–157

    Article  Google Scholar 

  • Nicholls RJ, Lowe JA (2004) Benefits of mitigation of climate change for coastal areas. Glob Env Chang 14:229–244

    Article  Google Scholar 

  • Nicholls RJ, Bradbury A, Burningham H et al (2012) iCOASST – integrating coastal sediment systems. Coast Eng Proc 1(33):100

    Google Scholar 

  • Nicholls RJ, Townend IH, Bradbury AP et al (2013) Planning for long-term coastal change: experience from England and Wales. Ocean Eng 71:3–16

    Article  Google Scholar 

  • Nordstrom KF (2014) Living with shore protection structures: a review. Estuar Coast Shelf Sci 150:11–23

    Article  Google Scholar 

  • Obhrai C, Powell KA, Bradbury AP (2008) A laboratory study of overtopping and breaching of shingle barrier beaches. In: Proceedings of the 31st international conference on Coastal Engineering, Hamburg, Germany. World Scientific

    Google Scholar 

  • Orford JD, Jennings SC (2007) Variation in the organisation of gravel-dominated coastal systems: Evidence from Nova Scotia and Southern England. Proceedings Coastal Sediments’07. New Orleans. Am Soc Civil Eng 1:434–448

    Google Scholar 

  • Park J-Y, Wells JT (2005) Longshore transport at Cape Lookout, North Carolina: shoal evolution and the regional sediment budget. J Coast Res 21:1–17

    Article  Google Scholar 

  • Pedersen JBT, Bartholdy J (2007) Exposed salt marsh morphodynamics: an example from the Danish Wadden Sea. Geomorphology 90:115–125

    Article  Google Scholar 

  • Phillips JD (2012) Synchronization and scale in geomorphic systems. Geomorphology 137:50–58

    Article  Google Scholar 

  • Phillips JD (2014) State transitions in geomorphic responses to environmental change. Geomorphology 204:208–217

    Article  Google Scholar 

  • Plater AJ, Stupples P, Roberts HH (2009) Evidence of episodic coastal change during the Late Holocene: the Dungeness barrier complex, SE England. Geomorphology 104:47–58

    Article  Google Scholar 

  • Poulos SE, Ballay A (2010) Grain-size trend analysis for the determination of non-biogenic sediment transport pathways on the Kwinte Bank (southern North Sea), in relation to sand dredging. J Coast Res SI 51:95–100

    Google Scholar 

  • Psuty NB, Pace J (2009) Sediment management at Sandy Hook, NJ: an interaction of science and public policy. Geomorphology 104:12–21

    Article  Google Scholar 

  • Robinson AHW (1966) Residual currents in relation to shoreline evolution of the East Anglian coast. Mar Geol 4:57–84

    Article  Google Scholar 

  • Roelvink D, Reniers A (2012) A guide to modeling coastal morphology. World Scientific, New Jersey

    Google Scholar 

  • Ruggiero P, Walstra DJR, Gelfenbaum G (2009) Seasonal-scale nearshore morphological evolution: field observations and numerical modeling. Coast Eng 56:1153–1172

    Article  Google Scholar 

  • Runyan K, Griggs GB (2003) The effects of armoring seacliffs on the natural sand supply to the beaches of California. J Coast Res 19:336–347

    Google Scholar 

  • Sanò M, Richards R, Medina R (2014) A participatory approach for system conceptualization and analysis. Environ Model Softw 54:142–152

    Article  Google Scholar 

  • Sayers PB, Hall JW, Meadowcroft IC (2002) Towards risk-based flood hazard management in the UK. Proc Inst Civil Eng 150:36–42

    Article  Google Scholar 

  • Schmidt T, Mitchell NC, Ramsay TS (2007) Use of swath bathymetry in the investigation of sand dune geometry and migration around a near shore ‘banner’ tidal sandbank. In: Balson PS, Collins MB (eds) Coastal and shelf sediment transport, Geological society special publication, 274. The Geological Society, London, pp 53–64

    Google Scholar 

  • Schmolke A, Thorbeck P, DeAngel DL (2010) Ecological models supporting environmental decision making: a strategy for the future. Trend Ecol Evol 25:479–486

    Article  Google Scholar 

  • Shih S-M, Komar PD (1994) Sediments, beach morphology and sea cliff erosion within an Oregon coastal littoral cell. J Coast Res 10:144–157

    Google Scholar 

  • Singh Chauhan PP (2009) Autocyclic erosion in tidal marshes. Geomorphology 110:45–57

    Article  Google Scholar 

  • Smits AJM, Nienhuis PH, Saeijs HLF (2006) Changing estuaries, changing views. Hydrobiologia 565:339–355

    Article  Google Scholar 

  • Spencer T, Brooks SM (2012) Methodologies for measuring and modelling change in coastal saline lagoons under historic and accelerated sea-level rise, Suffolk coast, eastern England. Hydrobiologia 693:99–115

    Article  Google Scholar 

  • Stapor FW (1973) History and sand budgets of the barrier island system in the Panama City, Florida, region. Mar Geol 14:277–286

    Article  Google Scholar 

  • Stive MJF, Capobianco M, Wang B (1998) Morphodynamics of a tidal lagoon and adjacent coasts. In: Proceedings 8th international conference on physics of estuaries and coastal seas. The Hague. Balkema, Rotterdam, pp 397–407

    Google Scholar 

  • Storlazzi CD, Field ME (2000) Sediment distribution and transport along a rocky, embayed coast: Monterey Peninsula and Carmel Bay, California. Mar Geol 170:289–316

    Article  Google Scholar 

  • Stul T, Gozzard JR, Eliot IG et al (2012) Coastal sediment cells between Cape Naturaliste and the Moore River, Western Australia. Report prepared by Damara WA Pty Ltd and Geological Survey of Western Australia for the Western Australian Department of Transport, Fremantle

    Google Scholar 

  • Swift DJP, Field ME (1981) Evolution of a classic sand ridge field: Maryland sector, North American inner shelf. Sedimentology 28:461–482

    Article  Google Scholar 

  • Van der Kreeke J, Hibma A (2005) Observations on silt and sand transport in the throat section of the Frisian Inlet. Coast Eng 52:59–175

    Google Scholar 

  • Van der Wegen M, Roelvink JA (2008) Long-term morphodynamic evolution of a tidal embayment using a two-dimensional, process-based model. J Geophys Res 113(C3016):1–23

    Google Scholar 

  • Van Koningsfeld M, Mulder JPM, Stive MJF et al (2008) Living with sea-level rise and climate change: a case study of the Netherlands. J Coast Res 24:367–379

    Google Scholar 

  • van Lancker V, Lanckneus J, Hearn S et al (2004) Coastal and nearshore morphology, bedforms and sediment transport pathways at Teignmouth (UK). Cont Shelf Res 24:1171–1202

    Article  Google Scholar 

  • Van Rijn LC, Ribberink JS, Van der Werf J et al (2013) Coastal sediment dynamics: recent advances and future research needs. J Hydraul Res 51:475–493

    Article  Google Scholar 

  • Van Slobbe E, de Vriend HJ, Aarninkhof S et al (2013) Building with nature: in search of resilient storm surge protection strategies. Nat Hazards 65:947–966

    Article  Google Scholar 

  • Villaret C, Hervouet J-M, Kopmann R et al (2013) Morphodynamic modelling using the Telemac finite-element system. Comput Geosci 53:105–113

    Article  Google Scholar 

  • Voinov A, Bousquet F (2010) Modelling with stakeholders. Environ Model Softw 25:1268–1281

    Article  Google Scholar 

  • Voinov A, Gaddis EB (2008) Lessons from successful participatory watershed modelling: a perspective from modelling practitioners. Ecol Model 216:197–207

    Article  Google Scholar 

  • Walkden M, Hall J (2011) A mesoscale predictive model of the evolution and management of a soft-rock coast. J Coast Res 27:529–543

    Article  Google Scholar 

  • Walkden MJ, Payo A, Barnes J, Burningham H (2015) Modeling the response of coupled barrier and cliff systems to sea level rise. In: Wang P, Rosati JD, Cheng J (eds) Proceedings coastal sediments 2015, World Scientific, New Jersey, 15pp

    Google Scholar 

  • Walstra DJR, Hoekstra R, Tonnon PK et al (2013) Input reduction for long-term morphodynamic simulations in wave-dominated coastal settings. Coast Eng 77:57–70

    Article  Google Scholar 

  • Werner BT (2003) Modeling landforms as self-organized, hierarchical dynamical systems. In: Wilcock PR, Iverson RM (eds) Prediction in geomorphology, Geophhysical Monograph 135. American Geophysical Union, Washington, DC, pp 133–150

    Chapter  Google Scholar 

  • Wetzel MA, Scholle J, Teschke K (2014) Artificial structures in sediment-dominated estuaries and their possible influences on the ecosystem. Mar Environ Res 99:125–135

    Article  Google Scholar 

Download references

Acknowledgements

The ideas presented here stem from work initially funded by the Environment Agency for England and Wales under project SC0060074 ‘Large-scale coastal geomorphological behaviour’. Refinement of the approach and software development has been funded by NERC as part of the UCL contribution to the Integrating COAstal Sediment SysTems (iCOASST) project (NE/J005541/1). We also gratefully acknowledge the comments of two reviewers, which improved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. French .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

French, J.R., Burningham, H., Thornhill, G.D., Nicholls, R.J. (2016). Integrating Estuarine, Coastal and Inner Shelf Sediment Systems in a Common Conceptual Framework as a Basis for Participatory Shoreline Management. In: Meadows, M., Lin, JC. (eds) Geomorphology and Society. Advances in Geographical and Environmental Sciences. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56000-5_15

Download citation

Publish with us

Policies and ethics