Skip to main content

Genome Evolution: Helicobacter pylori as an Extreme Model

  • Chapter
  • First Online:
Helicobacter pylori Research

Abstract

Helicobacter pylori strains have quite diverse genome sequences likely because of high mutation and recombination rates, and they may be a useful model to study genetics and evolution. Here, I discuss some features of their evolution that have emerged from comparative analyses of complete H. pylori genomes and methylomes. Emphasis will be placed on the roles of various modes of recombination.

The evolution of their chromosome synteny was reconstructed by analyzing inversions via four mechanisms: recombination events involving long or short sequence similarities, inversions adjacent to the insertion of a mobile element, and DNA duplications associated with inversions, a novel process of DNA duplication.

Phylogenetic trees of individual genes are often different from that of the core genome in size and topology, partly due to homologous recombination between lineages. The fine population structure of the species was inferred from an analysis of homologous recombination using a method called chromosome painting. Gene sequences often diverge between European strains and East Asian strains. The evolution of Western-type CagA to East Asian-type CagA can be explained by illegitimate recombination events, with the Amerindian type as an intermediate. Massive decay of molybdenum-related genes was found in East Asian strains.

Whole methylome decoding at single-nucleotide resolution revealed that the H. pylori methylome is highly variable because its many methyltransferases often change sequence specificity. Their target recognition domains may move between different genes, sometimes beyond species barriers, and they may even move within a gene (domain movement). These extremely variable methylomes, as opposed to variable genomes, might provide targets for natural selection in adaptive evolution—a hypothesis that may be called epigenetics-driven adaptive evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alm RA, Linq LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, deJonge BL, Carmel G, Tummino PJ, Caruso A, Uria-Nickelsen M, Mills DM, Ives C, Gibson R, Merberg D, Mills SD, Jiang Q, Taylor DE, Vovis GF, Trust TJ (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176–180

    Article  PubMed  Google Scholar 

  • Andres S, Skoglund A, Nilsson C, Krabbe M, Björkholm B, Engstrand L (2010) Type I restriction-modification loci reveal high allelic diversity in clinical Helicobacter pylori isolates. Helicobacter 15:114–125

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Huang Q, Gao D, Wang J, Lang Y, Liu T, Li B, Bai Z, Luis Goicoechea J, Liang C, Chen C, Zhang W, Sun S, Liao Y, Zhang X, Yang L, Song C, Wang M, Shi J, Liu G, Liu J, Zhou H, Zhou W, Yu Q, An N, Chen Y, Cai Q, Wang B, Liu B, Min J, Huang Y, Wu H, Li Z, Zhang Y, Yin Y, Song W, Jiang J, Jackson SA, Wing RA, Wang J, Chen M (2013) Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat Commun 4:1595

    Article  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003a) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Wirth T, Linz B, Pritchard JK, Stephens M, Kidd M, Blaser MJ, Graham DY, Vacher S, Perez-Perez GI, Yamaoka Y, MĂ©graud F, Otto K, Reichard U, Katzowitsch E, Wang X, Achtman M, Suerbaum S (2003b) Traces of human migrations in Helicobacter pylori populations. Science 299:1582–1585

    Article  CAS  PubMed  Google Scholar 

  • Fukuyo M, Nakano T, Zhang Y, Furuta Y, Ishikawa K, Watanabe-Matsui M, Yano H, Hamakawa T, Ide H, Kobayashi I (2015) Restriction-modification system with methyl-inhibited base excision and abasic-site cleavage activities. Nucleic Acids Res 43:2841–2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuta Y, Kobayashi I (2012a) Mobility of DNA sequence recognition domains in DNA methyltransferases suggests epigenetics-driven adaptive evolution. Mob Genet Elem 2:292–296

    Article  Google Scholar 

  • Furuta Y, Kobayashi I (2012b) Movement of DNA sequence recognition domains between non-orthologous proteins. Nucleic Acids Res 40:9218–9232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuta Y, Kobayashi I (2013) Restriction-modification systems as mobile epigenetic elements. In: Roberts A and Mullany P (eds) Bacterial integrative mobile genetic elements. Landes Bioscience, Austin, Texas, pp 85–103

    Google Scholar 

  • Furuta Y, Kawai M, Yahara K, Takahashi N, Handa N, Tsuru T, Oshima K, Yoshida M, Azuma T, Hattori M, Uchiyama I, Kobayashi I (2011a) Birth and death of genes linked to chromosomal inversion. Proc Natl Acad Sci U S A 108:1501–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuta Y, Kawai M, Uchiyama I, Kobayashi I (2011b) Domain movement within a gene: a novel evolutionary mechanism for protein diversification. PLoS One 6:e18819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuta Y, Yahara K, Hatakeyama M, Kobayashi I (2011c) Evolution of cagA oncogene of Helicobacter pylori through recombination. PLoS One 6:e23499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuta Y, Namba-Fukuyo H, Shibata TF, Nishiyama T, Shigenobu S, Suzuki Y, Sugano S, Hasebe M, Kobayashi I (2014) Methylome diversification through changes in DNA methyltransferase sequence specificity. PLoS Genet 10:e1004272

    Article  PubMed  PubMed Central  Google Scholar 

  • Gressmann H, Linz B, Ghai R, Pleissner KP, Schlapbach R, Yamaoka Y, Kraft C, Suerbaum S, Meyer TF, Achtman M (2005) Gain and loss of multiple genes during the evolution of Helicobacter pylori. PLoS Genet 1:e43

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatakeyama M (2014) Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe 15:306–316

    Article  CAS  PubMed  Google Scholar 

  • Humbert O, Salama NR (2008) The Helicobacter pylori HpyAXII restriction-modification system limits exogenous DNA uptake by targeting GTAC sites but shows asymmetric conservation of the DNA methyltransferase and restriction endonuclease components. Nucleic Acids Res 36:6893–6906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai M, Furuta Y, Yahara K, Tsuru T, Oshima K, Handa N, Takahashi N, Yoshida M, Azuma T, Hattori M, Uchiyama I, Kobayashi I (2011) Evolution in an oncogenic bacterial species with extreme genome plasticity: Helicobacter pylori East Asian genomes. BMC Microbiol 11:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima KK, Kobayashi I (2015) Transmission of PabI family of restriction DNA glycosylase genes: mobility and long-term inheritance. BMC Genomics 16:817

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Mukhopadhyay AK, Ghosh P, Rao DN (2012) Comparative transcriptomics of H. pylori strains AM5, SS1 and their hpyAVIBM deletion mutants: possible roles of cytosine methylation. PLoS One 7:e42303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson DJ, Hellenthal G, Myers S, Falush D (2012) Inference of population structure using dense haplotype data. PLoS Genet 8:e1002453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leituti G, Goldberg JB (2012) Outer membrane biogenesis in Escherichia coli, Neisseria meningitidis, and Helicobacter pylori: paradigm deviations in H. pylori. Front Cell Infect Microbiol 2:29

    Google Scholar 

  • Loenen WA, Dryden DT, Raleigh EA, Wilson GG (2014) Type I restriction enzymes and their relatives. Nucleic Acids Res 42:20–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazono K, Furuta Y, Watanabe-Matsui M, Miyakawa T, Ito T, Kobayashi I, Tanokura M (2014) A sequence-specific DNA glycosylase mediates restriction-modification in Pyrococcus abyssi. Nat Commun 5:3178

    Article  PubMed  Google Scholar 

  • Moodley Y, Linz B, Bond RP, Nieuwoudt M, Soodyall H, Schlebusch CM, Bernhöft S, Hale J, Suerbaum S, Mugisha L, van der Merwe SW, Achtman M (2012) Age of the Association between Helicobacter pylori and Man. PLoS Pathog 8:e1002693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray IA, Clark TA, Morgan RD, Boitano M, Anton BP, Luong K, Fomenkov A, Turner SW, Korlach J, Roberts RJ (2012) The methylomes of six bacteria. Nucleic Acids Res 40:11450–11462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranz JM, Maurin D, Chan YS, von Grotthuss M, Hillier LW, Roote J, Ashburner M, Bergman CM (2007) Principles of genome evolution in the Drosophila melanogaster species group. PLoS Biol 5:e152

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao DN, Dryden DT, Bheemanaik S (2014) Type III restriction-modification enzymes: a historical perspective. Nucleic Acids Res 42:45–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, Blumenthal RM, Degtyarev SK, Dryden DT, Dybvig K, Firman K, Gromova ES, Gumport RI, Halford SE, Hattman S, Heitman J, Hornby DP, Janulaitis A, Jeltsch A, Josephsen J, Kiss A, Klaenhammer TR, Kobayashi I, Kong H, KrĂĽger DH, Lacks S, Marinus MG, Miyahara M, Morgan RD, Murray NE, Nagaraja V, Piekarowicz A, Pingoud A, Raleigh E, Rao DN, Reich N, Repin VE, Selker EU, Shaw PC, Stein DC, Stoddard BL, Szybalski W, Trautner TA, Van Etten JL, Vitor JM, Wilson GG, Xu SY (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31:1805–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suerbaum S, Josenhans C (2007) Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat Rev Microbiol 5:441–452

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama I (2006) Hierarchical clustering algorithm for comprehensive orthologous-domain classification in multiple genomes. Nucleic Acids Res 34:647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchiyama I (2008) Multiple genome alignment for identifying the core structure among moderately related microbial genomes. BMC Genomics 9:515

    Article  PubMed  PubMed Central  Google Scholar 

  • Yahara K, Kawai M, Furuta Y, Takahashi N, Handa N, Tsuru T, Oshima K, Yoshida M, Azuma T, Hattori M, Uchiyama I, Kobayashi I (2012) Genome-wide survey of mutual homologous recombination in a highly sexual bacterial species. Genome Biol Evol 4:628–640

    Article  PubMed  PubMed Central  Google Scholar 

  • Yahara K, Furuta Y, Oshima K, Yoshida M, Azuma T, Hattori M, Uchiyama I, Kobayashi I (2013) Chromosome painting in silico in a bacterial species reveals fine population structure. Mol Biol Evol 30:1454–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yahara K, Didelot X, Ansari MA, Sheppard SK, Falush D (2014) Efficient inference of recombination hot regions in bacterial genomes. Mol Biol Evol 31:1593–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yahara K, Didelot X, Jolley KA, Kobayashi I, Maiden MCJ, Sheppard SK, Falush D (2015) The landscape of realized homologous recombination in pathogenic bacteria. Mol Biol Evol. doi:10.1093/molbev/msv237

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichizo Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kobayashi, I. (2016). Genome Evolution: Helicobacter pylori as an Extreme Model. In: Backert, S., Yamaoka, Y. (eds) Helicobacter pylori Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55936-8_9

Download citation

Publish with us

Policies and ethics