Skip to main content

Adaptation of Helicobacter pylori Metabolism to Persistent Gastric Colonization

  • Chapter
  • First Online:
Helicobacter pylori Research

Abstract

Helicobacter pylori is an amazingly successful pathogen that persistently colonizes the hostile gastric niche. Persistence of H. pylori colonization is an important parameter in the clinical outcome of the infection. H. pylori has evolved original mechanisms to colonize and persist within the stomach in spite of the harsh acidic conditions encountered in this environment. Genetic, physiological, and biochemical analyses of H. pylori have revealed peculiar properties of its metabolism, some of which are central in the adaptation to the gastric environment. The abundant enzyme urease is essential for H. pylori resistance to acidity through urea breakdown and production of buffering ammonia. Acid adaptation and management of the potentially toxic amounts of ammonia are closely associated through original transport and metabolic pathways, some of which involve protein complexes. Several metabolic enzymes have been shown to act in addition as genuine virulence factors in particular as immune modulators. This is illustrated by gamma-glutamyl transpeptidase, asparaginase, and arginase. Finally, given the central role of the nickel-dependent enzyme urease, the uptake and intracellular trafficking pathways of this metal essential for H. pylori colonization will be presented. In conclusion, we propose that the constrains of the small H. pylori genome and a very specialized niche has resulted in a close association and in overlapping networks between mechanisms of persistence, acid adaptation and metabolic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allan E, Clayton CL, McLaren A, Wallace DM, Wren BW (2001) Characterization of low-pH responses of Helicobacter pylori using genomic DNA arrays. Microbiology 147:2285–2292

    Article  CAS  PubMed  Google Scholar 

  • Ang S, Lee C, Peck K, Sindici M, Matrubutham U, Gleeson MA, Wang J (2001) Acid-induced expression in Helicobacter pylori: study in genomic scale by microarray. Infect Immun 69:1679–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellucci M, Zambelli B, Musiani F, Turano P, Ciurli S (2009) Helicobacter pylori UreE, a urease accessory protein: specific Ni2 +- and Zn2 +-binding properties and interaction with its cognate UreG. Biochem J 422:91–100

    Article  CAS  PubMed  Google Scholar 

  • Benoit SL, Mj L, Hill SA, Maier RJ (2012) Helicobacter pylori hydrogenase accessory protein HypA and urease accessory protein UreG compete with each other for UreE recognition. Biochim Biophys Acta 1820:1519–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benoit SL, Miller EF, Maier RJ (2013) Helicobacter pylori stores nickel to aid its host colonization. Infect Immun 81:580–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boer JL, Hausinger RP (2012) Klebsiella aerogenes UreF: identification of the UreG binding site and role in enhancing the fidelity of urease activation. Biochemistry 51:2298–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bury-Moné S, Skouloubris S, Labigne A, De Reuse H (2001) The Helicobacter pylori UreI protein: role in adaptation to acidity and identification of residues essential for its activity and for acid activation. Mol Microbiol 42:1021–1034

    Article  PubMed  Google Scholar 

  • Bury-Moné S, Skouloubris S, Dauga C, Thiberge J-M, Dailidiene D, Berg DE, Labigne A, De Reuse H (2003) Presence of active aliphatic amidases in Helicobacter species able to colonize the stomach. Infect Immun 71:5613–5622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bury-Moné S, Thiberge J-M, Contreras M, Maitournam A, Labigne A, De Reuse H (2004) Responsiveness to acidity via metal ion regulators mediates virulence in the gastric pathogen Helicobacter pylori. Mol Microbiol 53:623–638

    Article  PubMed  CAS  Google Scholar 

  • Bury-Mone S, Mendz GL, Ball GE, Thibonnier M, Stingl K, Ecobichon C, Ave P, Huerre M, Labigne A, Thiberge J-M, De Reuse H (2008) Roles of α and β carbonic anhydrases of Helicobacter pylori in the urease-dependent response to acidity and in colonization of the murine gastric mucosa. Infect Immun 76(2):497–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappelletti D, Chiarelli LR, Pasquetto MV, Stivala S, Valentini G, Scotti C (2008) Helicobacter pylori L-asparaginase: a promising chemotherapeutic agent. Biochem Biophys Res Commun 377:1222–1226

    Article  CAS  PubMed  Google Scholar 

  • Cerda O, Núñez-Villena F, Soto S, Ugalde J, López-Solís R, Toledo H (2011) tlpA gene expression is required for arginine and bicarbonate chemotaxis in Helicobacter pylori. Biol Res 44:277–282

    Article  CAS  PubMed  Google Scholar 

  • Chirica L, Elleby B, Lindskog S (2001) Cloning, expression and some properties of alpha-carbonic anhydrase from Helicobacter pylori. Biochim Biophys Acta 1544:55–63

    Article  CAS  PubMed  Google Scholar 

  • Chuawong P, Hendrickson T (2006) The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity. Biochemistry 45:8079–8087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras M, Thiberge JM, Mandrand-Berthelot MA, Labigne A (2003) Characterization of the roles of NikR, a nickel-responsive pleiotropic autoregulator of Helicobacter pylori. Mol Microbiol 49(4):947–963

    Article  CAS  PubMed  Google Scholar 

  • Das P, Lahiri A, Lahiri A, Chakravortty D (2010) Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS Pathog 6:e1000899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Reuse H, Skouloubris S (2001) Metabolism of nitrogenous compounds. In: Mobley H, Mendz G, Hazell S (eds) Helicobacter pylori: physiology and genetics. ASM Press, Washington, DC

    Google Scholar 

  • De Reuse H, Vinella D, Cavazza C (2013) Common themes and unique proteins for the uptake and trafficking of nickel, a metal essential for the virulence of Helicobacter pylori. Front Cell Infect Microbiol 3:94. doi:10.3389/fcimb.2013.00094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eaton KA, Krakowka S (1994) Effect of gastric pH on urease-dependent colonization of gnotobiotic piglets by Helicobacter pylori. Infect Immun 62(9):3604–3607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton KA, Brooks CL, Morgan DR, Krakowka S (1991) Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect Immun 59:2470–2475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst FD, Stoof J, Horrevoets WM, Kuipers EJ, Kusters JG, van Vliet AHM (2006) NikR mediates nickel-responsive transcriptional repression of the Helicobacter pylori outer membrane proteins FecA3 (HP1400) and FrpB4 (HP1512). Infect Immun 74(12):6821–6828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrugia M, Macomber L, Hausinger R (2013) Biosynthesis of the urease metallocenter. J Biol Chem 288:13178–13185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer F, Huot J, Lorber B, Diss G, Hendrickson T, Becker H, Lapointe J, Kern D (2012) The asparagine-transamidosome from Helicobacter pylori: a dual-kinetic mode in non-discriminating aspartyl-tRNA synthetase safeguards the genetic code. Nucleic Acids Res 40:4965–4976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong YH, Wong HC, Yuen MH, Lau PH, Chen YW, Wong KB (2013) Structure of UreG/UreF/UreH complex reveals how urease accessory proteins facilitate maturation of Helicobacter pylori urease. PLoS Biol 11:e1001678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107:4273–4303

    Article  CAS  PubMed  Google Scholar 

  • Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2:898–907

    Article  CAS  PubMed  Google Scholar 

  • Frost SC, McKenna R (2014) Carbonic anhydrase: mechanism, regulation, links to disease, and industrial applications, vol 75, Subcellular biochemistry. Springer, Dordrecht

    Book  Google Scholar 

  • Fulkerson JF, Mobley HLT (2000) Membrane topology of the NixA nickel transporter of Helicobacter pylori: two nickel transport-specific motifs within transmembrane helices II and III. J Bacteriol 182(6):1722–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garner RM, Fulkerson J Jr, Mobley HL (1998) Helicobacter pylori glutamine synthetase lacks features associated with transcriptional and posttranslational regulation. Infect Immun 66(5):1839–1847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ge R, Sun X, Wang D, Zhou Q, Sun H (2011) Histidine-rich protein Hpn from Helicobacter pylori forms amyloid-like fibrils in vitro and inhibits the proliferation of gastric epithelial AGS cells. Biochim Biophys Acta 1813:1422–1427

    Article  CAS  PubMed  Google Scholar 

  • Gilbert J, Ramakrishna J, Sunderman F Jr, Wright A, Plaut A (1995) Protein Hpn: cloning and characterization of a histidine-rich metal-binding polypeptide in Helicobacter pylori and Helicobacter mustelae. Infect Immun 63(7):2682–2688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gobert A, McGee D, Akhtar M, Mendz G, Newton J, Cheng Y, Mobley H, Wilson K (2001) Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc Natl Acad Sci U S A 98:13844–13849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray L, Gu S, Quick M, Khademi S (2011) Transport kinetics and selectivity of HpUreI, the urea channel from Helicobacter pylori. Biochemistry 50:8656–8663

    Article  CAS  PubMed  Google Scholar 

  • Ha NC, Oh ST, Sung JY, Cha KA, Lee MH, Oh BH (2001) Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nat Struct Biol 8(6):505–509

    Article  CAS  PubMed  Google Scholar 

  • Herbst RW, Perovic I, Martin-Diaconescu V, O’Brien K, Chivers PT, Pochapsky SS, Pochapsky TC, Maroney MJ (2010) Communication between the zinc and nickel sites in dimeric HypA: metal recognition and pH sensing. J Am Chem Soc 132:10338–10351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu LT, Mobley HL (1990) Purification and N-terminal analysis of urease from Helicobacter pylori. Infect Immun 58:992–998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hung C, Liu J, Chiu W, Huang S, Hwang J, Wang W (2007) Crystal structure of Helicobacter pylori formamidase AmiF reveals a cysteine-glutamate-lysine catalytic triad. J Biol Chem 282:12220–12229

    Article  CAS  PubMed  Google Scholar 

  • Huot J, Fischer F, Corbeil J, Madore E, Lorber B, Diss G, Hendrickson T, Kern D, Lapointe J (2011) Gln-tRNAGln synthesis in a dynamic transamidosome from Helicobacter pylori, where GluRS2 hydrolyzes excess Glu-tRNAGln. Nucleic Acids Res 39:9306–9315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kansau I, Guillain F, Thiberge J-M, Labigne A (1996) Nickel binding and immunological properties of the C-terminal domain of the Helicobacter pylori GroES homologue (HspA). Mol Microbiol 22:1013–1023

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Langford M, Boucher J, Testerman T, McGee D (2011) Helicobacter pylori arginase mutant colonizes arginase II knockout mice. World J Gastroenterol 17:3300–3309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labigne A, Cussac V, Courcoux P (1991) Shuttle cloning and nucleotide sequence of Helicobacter pylori genes responsible for urease activity. J Bacteriol 173:1920–1931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leduc D, Gallaud J, Stingl K, De Reuse H (2010) Coupled amino acid deamidase-transport systems essential for Helicobacter pylori colonization. Infect Immunol 78:2782–2792

    Article  CAS  Google Scholar 

  • Leigh J, Dodsworth J (2007) Nitrogen regulation in bacteria and archaea. Annu Rev Microbiol 61:349–377

    Article  CAS  PubMed  Google Scholar 

  • Maier T, Bock A (1996) Generation of active NiFe hydrogenase in vitro from a nickel-free precursor form. Biochemistry 35(31):10089–10093

    Article  CAS  PubMed  Google Scholar 

  • Maier RJ, Fu C, Gilbert J, Moshiri F, Olson J, Plaut AG (1996) Hydrogen uptake hydrogenase in Helicobacter pylori. FEMS Microbiol Lett 141(1):71–76

    Article  CAS  PubMed  Google Scholar 

  • Marais A, Mendz GL, Hazell SL, Megraud F (1999) Metabolism and genetics of Helicobacter pylori: the genome era. Microbiol Mol Biol Rev 63(3):642–674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marcus EA, Moshfegh AP, Sachs G, Scott D (2005) The periplasmic alpha-carbonic anhydrase activity of Helicobacter pylori is essential for acid acclimation. J Bacteriol 187:729–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcus E, Sachs G, Wen Y, Feng J, Scott DR (2012) Role of the Helicobacter pylori sensor kinase ArsS in protein trafficking and acid acclimation. J Bacteriol 194:5545–5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcus E, Sachs G, Scott D (2013) The role of ExbD in periplasmic pH homeostasis in Helicobacter pylori. Helicobacter 18:363–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGee DJ, Radcliff FJ, Mendz GL, Ferrero RL, Mobley HL (1999) Helicobacter pylori rocF is required for arginase activity and acid protection in vitro but is not essential for colonization of mice or for urease activity. J Bacteriol 181(23):7314–7322

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGee DJ, Zabaleta J, Viator RJ, Testerman TL, Ochoa AC, Mendz GL (2004) Purification and characterization of Helicobacter pylori arginase, RocF: unique features among the arginase superfamily. Eur J Biochem 271:1952–1962

    Article  CAS  PubMed  Google Scholar 

  • McNulty R, Ulmschneider J, Luecke H, Ulmschneider M (2013) Mechanisms of molecular transport through the urea channel of Helicobacter pylori. Nat Commun 4:2900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mendz GL, Hazell SL (1995) Aminoacid utilization by Helicobacter pylori. Int J Biochem Cell Biol 27(10):1085–1093

    Article  CAS  PubMed  Google Scholar 

  • Mendz GL, Holmes EM, Ferrero RL (1998) In situ characterization of Helicobacter pylori arginase. Biochim Biophys Acta 1388(2):465–477

    Article  CAS  PubMed  Google Scholar 

  • Merrell DS, Goodrich ML, Otto G, Tompkins LS, Falkow S (2003) pH-regulated gene expression of the gastric pathogen Helicobacter pylori. Infect Immun 71:3529–3539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller E, Maier R (2014) Ammonium metabolism enzymes aid Helicobacter pylori acid resistance. J Bacteriol 196:3074–3081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mobley HLT, Hausinger RP (1989) Microbial ureases: significance, regulation, and molecular characterization. Microbiol Rev 53:85–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mobley HLT, Garner RM, Chippendale GR, Gilbert JV, Kane AV, Plaut AG (1999) Role of Hpn and NixA of Helicobacter pylori in susceptibility and resistance to bismuth and other metal ions. Helicobacter 4(3):162–169

    Article  CAS  PubMed  Google Scholar 

  • Mollenhauer-Rektorschek M, Hanauer G, Sachs G, Melchers K (2002) Expression of UreI is required for intragastric transit and colonization of gerbil gastric mucosa by Helicobacter pylori. Res Microbiol 153:659–666

    Article  CAS  PubMed  Google Scholar 

  • Muller S, Gotz M, Beier D (2009) Histidine residue 94 is involved in pH sensing by histidine kinase ArsS of Helicobacter pylori. PLoS One 4:e6930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muller C, Bahlawane C, Aubert S, Delay CM, Schauer K, Michaud-Soret I, De Reuse H (2011) Hierarchical regulation of the NikR-mediated nickel response in Helicobacter pylori. Nucleic Acids Res 39:7564–7575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura A, Yao M, Chimnaronk S, Sakai N, Tanaka I (2006) Ammonia channel couples glutaminase with transamidase reactions in GatCAB. Science 312:1954–1958

    Article  CAS  PubMed  Google Scholar 

  • Nolan KJ, McGee DJ, Mitchell HM, Kolesnikow T, Harro JM, O’Rourke J, Wilson JE, Danon SJ, Moss ND, Mobley HLT, Lee A (2002) In vivo behaviour of a Helicobacter pylori SS1 nixA mutant with reduced urease activity. Infect Immun 70:685–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson JW, Maier RJ (2002) Molecular hydrogen as an energy source for Helicobacter pylori. Science 298(5599):1788–1790

    Article  CAS  PubMed  Google Scholar 

  • Olson JW, Mehta NS, Maier RJ (2001) Requirement of nickel metabolism proteins HypA and HypB for full activity of both hydrogenase and urease in Helicobacter pylori. Mol Microbiol 39:176–182

    Article  CAS  PubMed  Google Scholar 

  • Pflock M, Kennard S, Delany I, Scarlato V, Beier D (2005) Acid-induced activation of the urease promoters is mediated directly by the ArsRS two-component system of Helicobacter pylori. Infect Immunol 73:6437–6445

    Article  CAS  Google Scholar 

  • Pflock M, Kennard S, Finsterer N, Beier D (2006) Acid-responsive gene regulation in the human pathogen Helicobacter pylori. J Biotechnol 126:52–60

    Article  CAS  PubMed  Google Scholar 

  • Rain J-C, Selig L, De Reuse H, Battaglia V, Reverdy C, Simon S, Lenzen G, Petel F, Wojcik J, Schächter V, Chemama Y, Labigne A, Legrain P (2001) The protein-protein interaction map of the bacterial pathogen Helicobacter pylori. Nature 409:211–215

    Article  CAS  PubMed  Google Scholar 

  • Rimbara E, Mori S, Kim H, Shibayama K (2013) Role of γ-glutamyltranspeptidase in the pathogenesis of Helicobacter pylori infection. Microbiol Immunol 57:665–673

    Article  CAS  PubMed  Google Scholar 

  • Romagnoli S, Agriesti F, Scarlato V (2011) In vivo recognition of the fecA3 target promoter by Helicobacter pylori NikR. J Bacteriol 193:1131–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowinska-Zyrek M, Witkowska D, Bielinska S, Kamysz W, Kozlowski H (2011) The -Cys-Cys- motif in Helicobacter pylori’s Hpn and HspA proteins is an essential anchoring site for metal ions. Dalton Trans 40:5604–5610

    Article  CAS  PubMed  Google Scholar 

  • Rowinska-Zyrek M, Zakrzewska-Czerwinska J, Zawilak-Pawlik A, Kozlowski H (2014) Ni2+ chemistry in pathogens – a possible target for eradication. Dalton Trans 43:8976–8989

    Article  CAS  PubMed  Google Scholar 

  • Schauer K (2007) Étude du Métabolisme du Nickel chez Helicobacter pylori, vol 7, Université Paris. Denis Diderot, Paris

    Google Scholar 

  • Schauer K, Gouget B, Carriere M, Labigne A, de Reuse H (2007) Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol Microbiol 63:1054–1068

    Article  CAS  PubMed  Google Scholar 

  • Schauer K, Rodionov DA, de Reuse H (2008) New substrates for TonB-dependent transport: do we only see the ‘tip of the iceberg’? Trends Biochem Sci 33(7):330–338

    Article  CAS  PubMed  Google Scholar 

  • Schauer K, Muller C, Carriere M, Labigne A, Cavazza C, De Reuse H (2010) The Helicobacter pylori GroES cochaperonin HspA functions as a specialized nickel chaperone and sequestration protein through its unique C-terminal extension. J Bacteriol 192:1231–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber S, Konradt M, Groll C, Scheid P, Hanauer G, Werling H-O, Josenhans C, Suerbaum S (2004) The spatial orientation of Helicobacter pylori in the gastric mucus. Proc Natl Acad Sci U S A 101:5024–5029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber S, Bücker R, Groll C, Azevedo-Vethacke M, Garten D, Scheid P, Friedrich S, Gatermann S, Josenhans C, Suerbaum S (2005) Rapid loss of motility of Helicobacter pylori in the gastric lumen in vivo. Infect Immun 73:1584–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott DR, Weeks D, Hong C, Postius S, Melchers K, Sachs G (1998) The role of internal urease in acid resistance of Helicobacter pylori. Gastroenterology 114:58–70

    Article  CAS  PubMed  Google Scholar 

  • Scott DR, Marcus EA, Weeks DL, Lee A, Melchers K, Sachs G (2000) Expression of the Helicobacter pylori ureI gene is required for acidic pH activation of cytoplasmic urease. Infect Immunol 68:470–477

    Article  CAS  Google Scholar 

  • Scott DR, Marcus EA, Wen Y, Oh J, Sachs G (2007) Gene expression in vivo shows that Helicobacter pylori colonizes an acidic niche on the gastric surface. Proc Natl Acad Sci U S A 104:7235–7240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott D, Marcus E, Wen Y, Singh S, Feng J, Sachs G (2010) Cytoplasmic histidine kinase (HP0244)-regulated assembly of urease with UreI, a channel for urea and its metabolites, CO2, NH3, and NH4 +, is necessary for acid survival of Helicobacter pylori. J Bacteriol 192:94–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scotti C, Sommi P, Pasquetto M, Cappelletti D, Stivala S, Mignosi P, Savio M, Chiarelli L, Valentini G, Bolanos-Garcia V, Merrell D, Franchini S, Verona M, Bolis C, Solcia E, Manca R, Franciotta D, Casasc OA, Filipazzi P, Zardini E, Vannini V (2010) Cell-cycle inhibition by Helicobacter pylori L-asparaginase. PLoS One 5:e13892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seshadri S, Benoit SL, Maier RJ (2007) Roles of His-rich hpn and hpn-like proteins in Helicobacter pylori nickel physiology. J Bacteriol 189(11):4120–4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheppard K, Akochy P, Salazar J, Söll D (2007) The Helicobacter pylori amidotransferase GatCAB is equally efficient in glutamine-dependent transamidation of Asp-tRNAAsn and Glu-tRNAGln. J Biol Chem 282:11866–11873

    Article  CAS  PubMed  Google Scholar 

  • Sheppard K, Yuan J, Hohn M, Jester B, Devine K, Söll D (2008) From one amino acid to another: tRNA-dependent amino acid biosynthesis. Nucleic Acids Res 36:1813–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibayama K, Wachino J-I, Arakawa Y, Saidijam M, Rutherford NG, Henderson PJF (2007) Metabolism of glutamine and glutathione via g-glutamyltranspeptidase and glutamate transport in Helicobacter pylori: possible significance in the pathophysiology of the organism. Mol Microbiol 64:396–406

    Article  CAS  PubMed  Google Scholar 

  • Shibayama K, Takeuchi H, Wachino J, Mori S, Arakawa Y (2011) Biochemical and pathophysiological characterization of Helicobacter pylori asparaginase. Microbiol Immunol 55:408–417

    Article  CAS  PubMed  Google Scholar 

  • Silva G, Fatma S, Floyd A, Fischer F, Chuawong P, Cruz A, Simari R, Joshi N, Kern D, Hendrickson T (2013) A tRNA-independent mechanism for transamidosome assembly promotes aminoacyl-tRNA transamidation. J Biol Chem 288:3816–3822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skouloubris S, Labigne A, De Reuse H (1997) Identification and characterization of an aliphatic amidase in Helicobacter pylori. Mol Microbiol 25:989–998

    Article  CAS  PubMed  Google Scholar 

  • Skouloubris S, Thiberge JM, Labigne A, De Reuse H (1998) The Helicobacter pylori UreI protein is not involved in urease activity but is essential for bacterial survival in vivo. Infect Immun 66(9):4517–4521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skouloubris S, Labigne A, De Reuse H (2001) The AmiE aliphatic amidase and AmiF formamidase of Helicobacter pylori: natural evolution of two enzyme paralogs. Mol Microbiol 40:596–609

    Article  CAS  PubMed  Google Scholar 

  • Skouloubris S, de Pouplana LR, de Reuse H, Hendrickson TL (2003) A noncognate aminoacyl-tRNA synthetase that may resolve a missing link in protein evolution. Proc Natl Acad Sci U S A 100(20):11297–11302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahler FN, Odenbreit S, Haas R, Wilrich J, Van Vliet AH, Kusters JG, Kist M, Bereswill S (2006) The novel Helicobacter pylori CznABC metal efflux pump is required for cadmium, zinc, and nickel resistance, urease modulation, and gastric colonization. Infect Immun 74(7):3845–3852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stark RM, Suleiman MS, Hassan IJ, Greenman J, Millar MR (1997) Amino acid utilisation and deamination of glutamine and asparagine by Helicobacter pylori. J Med Microbiol 46:793–800

    Article  CAS  PubMed  Google Scholar 

  • Stingl K, De Reuse H (2005) Staying alive overdosed: how does Helicobacter pylori control urease activity? Int J Med Microbiol 295(5):307–315

    Article  CAS  PubMed  Google Scholar 

  • Stingl K, Schauer K, Ecobichon C, Labigne A, Lenormand P, Rousselle JC, Namane A, de Reuse H (2008) In vivo interactome of Helicobacter pylori urease revealed by tandem affinity purification. Mol Cell Proteomics 7(12):2429–2441

    Article  CAS  PubMed  Google Scholar 

  • Strugatsky D, McNulty R, Munson K, Chen C, Soltis S, Sachs G, Luecke H (2013) Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori. Nature 493:255–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suerbaum S, Thiberge JM, Kansau I, Ferrero RL, Labigne A (1994) Helicobacter pylori hspA-hspB heat-shock gene cluster: nucleotide sequence, expression, putative function and immunogenicity. Mol Microbiol 14(5):959–974

    Article  CAS  PubMed  Google Scholar 

  • Tomb J-F, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA et al (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547

    Article  CAS  PubMed  Google Scholar 

  • Van Vliet AHM, Kuipers E, Waidner B, Davies BJ, De Vries N, Penn CW, Vandenbroucke-Grauls CMJE, Kist M, Bereswill S, Kusters JG (2001) Nickel-responsive induction of urease expression in Helicobacter pylori is mediated at the transcriptional level. Infect Immunol 69:4891–4897

    Article  Google Scholar 

  • van Vliet AHM, Poppelaars SW, Davies BJ, Stoof J, Bereswill S, Kist M, Penn CW, Kuipers EJ, Kusters JG (2002) NikR mediates nickel-responsive transcriptional induction of urease expression in Helicobacter pylori. Infect Immun 70(6):2846–2852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Vliet AHM, Stoof J, Poppelaars SW, Heijens A, Kuipers EJ, Kusters JG (2003) Acid- and nickel-responsive transcriptional induction of ammonia-producing enzymes in Helicobacter pylori. Gastroenterology 124(4):A52–A52

    Article  Google Scholar 

  • van Vliet AHM, Ernst FD, Kuipers EJ, Heijens A, Stoof J, Kusters JG (2004a) The NikR protein governs transcriptional regulation of NixA-mediated nickel-uptake in Helicobacter pylori. Gastroenterology 126(4):A402–A402

    Google Scholar 

  • van Vliet AHM, Kuipers EJ, Stoof J, Poppelaars SW, Kusters JG (2004b) Acid-responsive gene induction of ammonia-producing enzymes in Helicobacter pylori is mediated via a metal-responsive repressor cascade. Infect Immun 72(2):766–773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vinella D, Fischer F, Vorontsov E, Gallaud J, Malosse C, Michel V, Cavazza C, Robbe-Saule M, Richaud P, Chamot-Rooke J, Brochier-Armanet C, de Reuse H (2015) Evolution of Helicobacter: acquisition by gastric species of two Histidine-rich proteins essential for colonization. PLoS Pathog 11(12). doi:10.1371/journal.ppat.1005312

    Google Scholar 

  • Voland P, Weeks D, Marcus E, Prinz C, Sachs G, Scott D (2003) Interactions among the seven Helicobacter pylori proteins encoded by the urease gene cluster. Am J Physiol Gastrointest Liver Physiol 284:G96–G106

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Sasaki D, Tominaga T, Miki K (2012) Structural basis of [NiFe] hydrogenase maturation by Hyp proteins. Biol Chem 393:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Weeks DL, Sachs G (2001) Sites of pH regulation of the urea channel of Helicobacter pylori. Mol Microbiol 40:1249–1259

    Article  CAS  PubMed  Google Scholar 

  • Weeks DL, Eskandari S, Scott DR, Sachs G (2000) A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287:482–485

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Marcus EA, Matrubutham U, Gleeson MA, Scott DR, Sachs G (2003) Acid-adaptive genes of Helicobacter pylori. Infect Immun 71:5921–5939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen Y, Feng J, Scott DR, Marcus EA, Sachs G (2007) The HP0165-HP0166 two-component system (ArsRS) regulates acid-induced expression of HP1186 alpha-carbonic anhydrase in Helicobacter pylori by activating the pH-dependent promoter. J Bacteriol 189:2426–2434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams CL, Preston T, Hossack M, Slater C, McColl KEL (1996) Helicobacter pylori utilises urea for amino acid synthesis. FEMS Immunol Med Microbiol 13:87–94

    Article  CAS  PubMed  Google Scholar 

  • Wolfram L, Haas E, Bauerfeind P (2006) Nickel represses the synthesis of the nickel permease NixA of Helicobacter pylori. J Bacteriol 188(4):1245–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Li H, Cheng T, Xia W, Lai Y, Sun H (2014) Nickel translocation between metallochaperones HypA and UreE in Helicobacter pylori. Metallomics 6:1731–1736

    Article  CAS  PubMed  Google Scholar 

  • Zabaleta J, McGee D, Zea A, Hernandez C, Rodriguez P et al (2004) Helicobacter pylori arginase inhibits T cell proliferation and reduces the expression of the TCR zeta-chain (CD3zeta). J Immunol 173:586–593

    Article  CAS  PubMed  Google Scholar 

  • Zambelli B, Turano P, Musiani F, Neyroz P, Ciurli S (2009) Zn2+-linked dimerization of UreG from Helicobacter pylori, a chaperone involved in nickel trafficking and urease activation. Proteins Struct Funct Bioinform 74(1):222–239

    Article  CAS  Google Scholar 

  • Zambelli B, Berardi A, Martin-Diaconescu V, Mazzei L, Musiani F, Maroney M, Ciurli S (2014) Nickel binding properties of Helicobacter pylori UreF, an accessory protein in the nickel-based activation of urease. J Biol Inorg Chem 19:319–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Yang N, Sun H (2011) Metal-binding properties of an Hpn-like histidine-rich protein. Chem Eur J 17:5852–5860

    Article  CAS  PubMed  Google Scholar 

  • Zeng YB, Zhang DM, Li H, Sun H (2008) Binding of Ni2+ to a histidine- and glutamine-rich protein, Hpn-like. J Biol Inorg Chem 13:1121–1131

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilde De Reuse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Fischer, F., De Reuse, H. (2016). Adaptation of Helicobacter pylori Metabolism to Persistent Gastric Colonization. In: Backert, S., Yamaoka, Y. (eds) Helicobacter pylori Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55936-8_2

Download citation

Publish with us

Policies and ethics