Skip to main content

Photodermatology: Therapeutic Photomedicine for Skin Diseases

  • Chapter
  • First Online:
Immunology of the Skin

Abstract

Natural sunlight has beneficial effects for various skin conditions and immunoregulatory functions. Phototherapy utilizes the beneficial effects and immunoregulatory functions of natural sunlight. Phototherapy is used for refractory skin disease when topical steroid treatment is not effective. Ultraviolet light (UV) phototherapy using broadband UVB (290–320 nm) and narrowband UVA (311–313 nm) is a well-established treatment for refractory skin disease, such as psoriasis. UV phototherapy has two primary modes of action: apoptosis induction and immune suppression. Narrowband UVB depletes pathogenic T cells by inducing apoptosis and induces regulatory T cells. UVB, psoralen and UVA, and UVA-1 (340–400 nm) are useful treatments of refractory skin diseases, and can be used in conjunction with topical steroids. Selective wavelength phototherapies are used to minimize the carcinogenic risks of UV exposure. UVA-1 effectively penetrates the dermal layers, and is thus superior to UVB, which is mainly absorbed by the epidermis. UVA-1 induces both early and late apoptosis, whereas UVB induces only late apoptosis, making UVA-1 phototherapy particularly effective for treating pathogenically relevant cells, leading to immediate and long-lasting remission. Excimer light (308 nm) therapy effectively targets affected skin without undue exposure of other areas and increases the levels of T regulatory cells. Fewer treatments and a lower cumulative UVB dose are other advantages of excimer light; the greater carcinogenic risk is ameliorated by the reduced number of treatments needed. Intensive studies of phototherapy effects have led to several improvements in the design and protocols, providing several options to patients with skin disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aubin F, Vigan M, Puzenat E, Blanc D, Drobacheff C, Deprez P, Humbert P, Laurent R (2005) Evaluation of a novel 308-nm monochromatic excimer light delivery system in dermatology: a pilot study in different chronic localized dermatoses. Br J Dermatol 152(1):99–103. doi:10.1111/j.1365-2133.2005.06320.x

    Article  CAS  PubMed  Google Scholar 

  2. Bonis B, Kemeny L, Dobozy A, Bor Z, Szabo G, Ignacz F (1997) 308 nm UVB excimer laser for psoriasis. Lancet 350(9090):1522. doi:10.1016/S0140-6736(05)63945-1

    Article  CAS  PubMed  Google Scholar 

  3. Furuhashi T, Saito C, Torii K, Nishida E, Yamazaki S, Morita A (2013) Photo(chemo)therapy reduces circulating Th17 cells and restores circulating regulatory T cells in psoriasis. PLoS One 8(1):e54895. doi:10.1371/journal.pone.0054895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Furuhashi T, Torii K, Kato H, Nishida E, Saito C, Morita A (2011) Efficacy of excimer light therapy (308 nm) for palmoplantar pustulosis with the induction of circulating regulatory T cells. Exp Dermatol 20(9):768–770. doi:10.1111/j.1600-0625.2011.01316.x

    Article  CAS  PubMed  Google Scholar 

  5. Ghoreishi M, Dutz JP (2006) Tolerance induction by transcutaneous immunization through ultraviolet-irradiated skin is transferable through CD4+CD25+ T regulatory cells and is dependent on host-derived IL-10. J Immunol 176(4):2635–2644

    Article  CAS  PubMed  Google Scholar 

  6. Godar DE (1996) Preprogrammed and programmed cell death mechanisms of apoptosis: UV-induced immediate and delayed apoptosis. Photochem Photobiol 63(6):825–830

    Article  CAS  PubMed  Google Scholar 

  7. Godar DE (1999) UVA1 radiation triggers two different final apoptotic pathways. J Invest Dermatol 112(1):3–12. doi:10.1046/j.1523-1747.1999.00474.x

    Article  CAS  PubMed  Google Scholar 

  8. Grewe M, Gyufko K, Schopf E, Krutmann J (1994) Lesional expression of interferon-gamma in atopic eczema. Lancet 343(8888):25–26

    Article  CAS  PubMed  Google Scholar 

  9. Johnson-Huang LM, Suarez-Farinas M, Sullivan-Whalen M, Gilleaudeau P, Krueger JG, Lowes MA (2010) Effective narrow-band UVB radiation therapy suppresses the IL-23/IL-17 axis in normalized psoriasis plaques. J Invest Dermatol 130(11):2654–2663. doi:10.1038/jid.2010.166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krutmann J (1996) Phototherapy for atopic dermatitis. Dermatol Ther 1:24–31

    Google Scholar 

  11. Krutmann J, Morita A (2001) Photo(chemo)therapy for atopic dermatitis. In: Krutmann J, Höningsmann H, Elmets C, Bergstresser P (eds) Dermatological phototherapy and photodiagnostic methods. Springer, New York, pp 93–108

    Chapter  Google Scholar 

  12. Krutmann J, Morita A (2007) Therapeutic photomedicine phototherapy. In: Freedberg I, Eisen A, Wolff K, Austen K, Goldsmith L, Katz S (eds) Fitzpatrick’s dermatology in general medicine. McGraw Hill, New York, pp 2243–2249

    Google Scholar 

  13. Krutmann J, Morita A, Elmets C (2009) Mechanism of photo(chemo)therapy. In: Krutmann J, Hönigsmann H, Elmets C, Bergstresser P (eds) Dermatological phototherapy and photodiagnostic methods. Springer, New York, pp 103–118

    Chapter  Google Scholar 

  14. Lo YH, Torii K, Saito C, Furuhashi T, Maeda A, Morita A (2010) Serum IL-22 correlates with psoriatic severity and serum IL-6 correlates with susceptibility to phototherapy. J Dermatol Sci 58(3):225–227. doi:10.1016/j.jdermsci.2010.03.018

    Article  CAS  PubMed  Google Scholar 

  15. Loser K, Mehling A, Loeser S, Apelt J, Kuhn A, Grabbe S, Schwarz T, Penninger JM, Beissert S (2006) Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med 12(12):1372–1379. doi:10.1038/nm1518

    Article  CAS  PubMed  Google Scholar 

  16. Miyauchi-Hashimoto H, Horio T (1996) Suppressive effect of ultraviolet B radiation on contact sensitization in mice. II. Systemic immunosuppression is modulated by ultraviolet irradiation and hapten application. Photodermatol Photoimmunol Photomed 12(4):137–144

    Article  CAS  PubMed  Google Scholar 

  17. Miyauchi H, Horio T (1995) Ultraviolet B-induced local immunosuppression of contact hypersensitivity is modulated by ultraviolet irradiation and hapten application. J Invest Dermatol 104(3):364–369

    Article  CAS  PubMed  Google Scholar 

  18. Mizuno K, Okamoto H, Horio T (2004) Ultraviolet B radiation suppresses endocytosis, subsequent maturation, and migration activity of langerhans cell-like dendritic cells. J Invest Dermatol 122(2):300–306. doi:10.1046/j.0022-202X.2004.22206.x

    Article  CAS  PubMed  Google Scholar 

  19. Moodycliffe AM, Kimber I, Norval M (1992) The effect of ultraviolet B irradiation and urocanic acid isomers on dendritic cell migration. Immunology 77(3):394–399

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Morita A, Werfel T, Stege H, Ahrens C, Karmann K, Grewe M, Grether-Beck S, Ruzicka T, Kapp A, Klotz LO, Sies H, Krutmann J (1997) Evidence that singlet oxygen-induced human T helper cell apoptosis is the basic mechanism of ultraviolet-A radiation phototherapy. J Exp Med 186(10):1763–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ozawa M, Ferenczi K, Kikuchi T, Cardinale I, Austin LM, Coven TR, Burack LH, Krueger JG (1999) 312-nanometer ultraviolet B light (narrow-band UVB) induces apoptosis of T cells within psoriatic lesions. J Exp Med 189(4):711–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parrish JA, Jaenicke KF (1981) Action spectrum for phototherapy of psoriasis. J Invest Dermatol 76(5):359–362

    Article  CAS  PubMed  Google Scholar 

  23. Plettenberg H, Stege H, Megahed M, Ruzicka T, Hosokawa Y, Tsuji T, Morita A, Krutmann J (1999) Ultraviolet A1 (340-400 nm) phototherapy for cutaneous T-cell lymphoma. J Am Acad Dermatol 41(1):47–50

    Article  CAS  PubMed  Google Scholar 

  24. Racz E, Prens EP, Kurek D, Kant M, de Ridder D, Mourits S, Baerveldt EM, Ozgur Z, van IJcken WF, Laman JD, Staal FJ, van der Fits L (2011) Effective treatment of psoriasis with narrow-band UVB phototherapy is linked to suppression of the IFN and Th17 pathways. J Invest Dermatol 131(7):1547–1558. doi:10.1038/jid.2011.53

    Article  CAS  PubMed  Google Scholar 

  25. Richard EG, Honigsmann H (2014) Phototherapy, psoriasis, and the age of biologics. Photodermatol Photoimmunol Photomed 30(1):3–7. doi:10.1111/phpp.12088

    Article  PubMed  Google Scholar 

  26. Saito C, Maeda A, Morita A (2009) Bath-PUVA therapy induces circulating regulatory T cells in patients with psoriasis. J Dermatol Sci 53(3):231–233. doi:10.1016/j.jdermsci.2008.09.011

    Article  CAS  PubMed  Google Scholar 

  27. Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562. doi:10.1146/annurev.immunol.21.120601.141122

    Article  CAS  PubMed  Google Scholar 

  28. Schwarz A, Maeda A, Kernebeck K, van Steeg H, Beissert S, Schwarz T (2005) Prevention of UV radiation-induced immunosuppression by IL-12 is dependent on DNA repair. J Exp Med 201(2):173–179. doi:10.1084/jem.20041212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schwarz A, Maeda A, Schwarz T (2007) Alteration of the migratory behavior of UV-induced regulatory T cells by tissue-specific dendritic cells. J Immunol 178(2):877–886

    Article  CAS  PubMed  Google Scholar 

  30. Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2(6):389–400. doi:10.1038/nri821

    CAS  PubMed  Google Scholar 

  31. Shintani Y, Yasuda Y, Kobayashi K, Maeda A, Morita A (2008) Narrowband ultraviolet B radiation suppresses contact hypersensitivity. Photodermatol Photoimmunol Photomed 24(1):32–37. doi:10.1111/j.1600-0781.2008.00333.x

    Article  PubMed  Google Scholar 

  32. Soyland E, Heier I, Rodriguez-Gallego C, Mollnes TE, Johansen FE, Holven KB, Halvorsen B, Aukrust P, Jahnsen FL, de la Rosa Carrillo D, Krogstad AL, Nenseter MS (2011) Sun exposure induces rapid immunological changes in skin and peripheral blood in patients with psoriasis. Br J Dermatol 164(2):344–355. doi:10.1111/j.1365-2133.2010.10149.x

    Article  CAS  PubMed  Google Scholar 

  33. Stege H, Schopf E, Ruzicka T, Krutmann J (1996) High-dose UVA1 for urticaria pigmentosa. Lancet 347(8993):64

    Article  CAS  PubMed  Google Scholar 

  34. Sugiyama H, Gyulai R, Toichi E, Garaczi E, Shimada S, Stevens SR, McCormick TS, Cooper KD (2005) Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol 174(1):164–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Torii K, Furuhashi T, Saito C, Kato H, Nishioka A, Nishida E, Shintani Y, Morita A (2011) Increased peripheral Th17 in patients with pustulosis palmaris et plantaris. Arch Dermatol Res 303(6):441–444. doi:10.1007/s00403-010-1112-x

    Article  PubMed  Google Scholar 

  36. Torii K, Maeda A, Saito C, Furuhashi T, Shintani Y, Shirakata Y, Morita A (2009) UVB wavelength dependency of antimicrobial peptide induction for innate immunity in normal human keratinocytes. J Dermatol Sci 56(3):217–219. doi:10.1016/j.jdermsci.2009.07.011

    Article  PubMed  Google Scholar 

  37. Torii K, Nakamura M, Morita A (2013) NB-UVB irradiation increases filaggrin expression in a three-dimensional human skin model. J Dermatol Sci 70(2):146–147. doi:10.1016/j.jdermsci.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  38. Walters IB, Burack LH, Coven TR, Gilleaudeau P, Krueger JG (1999) Suberythemogenic narrow-band UVB is markedly more effective than conventional UVB in treatment of psoriasis vulgaris. J Am Acad Dermatol 40(6 Pt 1):893–900

    Article  CAS  PubMed  Google Scholar 

  39. Yamauchi R, Morita A, Yasuda Y, Grether-Beck S, Klotz LO, Tsuji T, Krutmann J (2004) Different susceptibility of malignant versus nonmalignant human T cells toward ultraviolet A-1 radiation-induced apoptosis. J Invest Dermatol 122(2):477–483. doi:10.1046/j.0022-202X.2003.22106.x

    Article  CAS  PubMed  Google Scholar 

  40. Zhang L, Yang XQ, Cheng J, Hui RS, Gao TW (2010) Increased Th17 cells are accompanied by FoxP3(+) Treg cell accumulation and correlated with psoriasis disease severity. Clin Immunol 135(1):108–117. doi:10.1016/j.clim.2009.11.008

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akimichi Morita M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Morita, A. (2016). Photodermatology: Therapeutic Photomedicine for Skin Diseases. In: Kabashima, K. (eds) Immunology of the Skin. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55855-2_30

Download citation

Publish with us

Policies and ethics