Skip to main content

Innate Immunity

  • Chapter
  • First Online:
Immunology of the Skin

Abstract

Innate immunity senses the presence of a pathogen by recognizing molecules typical to a microbe but not shared by host cells, termed pathogen-associated molecular patterns (PAMPs). In addition, danger-associated molecular pattern (DAMPs) molecules also initiate a noninfectious inflammatory response through the innate immune system. Many nonimmune cells resident in the skin, as well as immune cells, are endowed with an array of pattern recognition receptors (PRRs) that orchestrate self-defense against invading pathogens by detecting the presence of pathogenic microorganisms. The major PRRs are Toll-like receptors (TLRs), nucleotide-binding oligomerization domain, leucine-rich repeat containing, or Nod-like receptors (NLRs), retinoic acid-inducible gene I-like receptors (RLRs), and C-type lectin receptors (CLRs). Recognition of PAMPs and DAMPs by those receptors initiates several different responses to eliminate the pathogen, such as the production of type I interferon and inflammatory cytokines. Antimicrobial peptides, produced by keratinocytes and neutrophils that have migrated to skin, also play an important role in innate immunity due to their antimicrobial activity. Dysregulation of innate receptors or antimicrobial peptides leads to increased susceptibility to infection and inflammatory diseases in the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Medzhitov R, Janeway CA Jr (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91(3):295–298

    Article  CAS  PubMed  Google Scholar 

  2. Soosaar JL, Burch-Smith TM, Dinesh-Kumar SP (2005) Mechanisms of plant resistance to viruses. Nat Rev Microbiol 3(10):789–798

    Article  CAS  PubMed  Google Scholar 

  3. Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A et al (2010) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11(12):1136–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30(1):16–34

    Article  CAS  PubMed  Google Scholar 

  5. Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272(24):6179–6217

    Article  CAS  PubMed  Google Scholar 

  6. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384

    Article  CAS  PubMed  Google Scholar 

  7. Franchi L, Warner N, Viani K, Nunez G (2009) Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 227(1):106–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5(10):987–995

    Article  CAS  PubMed  Google Scholar 

  9. Lebre MC, van der Aar AM, van Baarsen L, van Capel TM, Schuitemaker JH, Kapsenberg ML et al (2007) Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J Invest Dermatol 127(2):331–341

    Article  CAS  PubMed  Google Scholar 

  10. Mempel M, Voelcker V, Kollisch G, Plank C, Rad R, Gerhard M et al (2003) Toll-like receptor expression in human keratinocytes: nuclear factor kappaB controlled gene activation by Staphylococcus aureus is toll-like receptor 2 but not toll-like receptor 4 or platelet activating factor receptor dependent. J Invest Dermatol 121(6):1389–1396

    Article  CAS  PubMed  Google Scholar 

  11. Song PI, Park YM, Abraham T, Harten B, Zivony A, Neparidze N et al (2002) Human keratinocytes express functional CD14 and toll-like receptor 4. J Invest Dermatol 119(2):424–432

    Article  CAS  PubMed  Google Scholar 

  12. Kalali BN, Kollisch G, Mages J, Muller T, Bauer S, Wagner H et al (2008) Double-stranded RNA induces an antiviral defense status in epidermal keratinocytes through TLR3-, PKR-, and MDA5/RIG-I-mediated differential signaling. J Immunol 181(4):2694–2704

    Article  CAS  PubMed  Google Scholar 

  13. Lebre MC, Antons JC, Kalinski P, Schuitemaker JH, van Capel TM, Kapsenberg ML et al (2003) Double-stranded RNA-exposed human keratinocytes promote Th1 responses by inducing a type-1 polarized phenotype in dendritic cells: role of keratinocyte-derived tumor necrosis factor alpha, type I interferons, and interleukin-18. J Invest Dermatol 120(6):990–997

    Article  CAS  PubMed  Google Scholar 

  14. Flacher V, Bouschbacher M, Verronese E, Massacrier C, Sisirak V, Berthier-Vergnes O et al (2006) Human Langerhans cells express a specific TLR profile and differentially respond to viruses and Gram-positive bacteria. J Immunol 177(11):7959–7967

    Article  CAS  PubMed  Google Scholar 

  15. Miller LS (2008) Toll-like receptors in skin. Adv Dermatol 24:71–87

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK et al (2008) The NLR gene family: a standard nomenclature. Immunity 28(3):285–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, Viala J et al (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300(5625):1584–1587

    Article  CAS  PubMed  Google Scholar 

  18. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G et al (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278(11):8869–8872

    Article  CAS  PubMed  Google Scholar 

  19. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J et al (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 278(8):5509–5512

    Article  CAS  PubMed  Google Scholar 

  20. Bertrand MJ, Doiron K, Labbe K, Korneluk RG, Barker PA, Saleh M (2009) Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity 30(6):789–801

    Article  CAS  PubMed  Google Scholar 

  21. Harder J, Nunez G (2009) Functional expression of the intracellular pattern recognition receptor NOD1 in human keratinocytes. J Invest Dermatol 129(5):1299–1302

    Article  CAS  PubMed  Google Scholar 

  22. Voss E, Wehkamp J, Wehkamp K, Stange EF, Schroder JM, Harder J (2006) NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem 281(4):2005–2011

    Article  CAS  PubMed  Google Scholar 

  23. Munoz-Planillo R, Franchi L, Miller LS, Nunez G (2009) A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the Nlrp3 inflammasome. J Immunol 183(6):3942–3948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320(5876):674–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL et al (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9(8):847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li H, Willingham SB, Ting JP, Re F (2008) Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol 181(1):17–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453(7198):1122–1126

    Article  CAS  PubMed  Google Scholar 

  28. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11(2):136–140

    Article  CAS  PubMed  Google Scholar 

  29. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464(7293):1357–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA et al (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 11(10):897–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9(8):857–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440(7081):237–241

    Article  CAS  PubMed  Google Scholar 

  33. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M et al (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440(7081):228–232

    Article  CAS  PubMed  Google Scholar 

  34. Misawa T, Takahama M, Kozaki T, Lee H, Zou J, Saitoh T et al (2013) Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol 14(5):454–460

    Article  CAS  PubMed  Google Scholar 

  35. Satoh T, Kambe N, Matsue H (2013) NLRP3 activation induces ASC-dependent programmed necrotic cell death, which leads to neutrophilic inflammation. Cell Death Dis 4:e644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Watanabe H, Gaide O, Petrilli V, Martinon F, Contassot E, Roques S et al (2007) Activation of the IL-1beta-processing inflammasome is involved in contact hypersensitivity. J Invest Dermatol 127(8):1956–1963

    Article  CAS  PubMed  Google Scholar 

  37. Kikuchi-Yanoshita R, Taketomi Y, Koga K, Sugiki T, Atsumi Y, Saito T et al (2003) Induction of PYPAF1 during in vitro maturation of mouse mast cells. J Biochem 134(5):699–709

    Article  CAS  PubMed  Google Scholar 

  38. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR et al (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458(7237):514–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458(7237):509–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Koning HD, Bergboer JG, van den Bogaard EH, van Vlijmen-Willems IM, Rodijk-Olthuis D, Simon A et al (2012) Strong induction of AIM2 expression in human epidermis in acute and chronic inflammatory skin conditions. Exp Dermatol 21(12):961–964

    Article  PubMed  Google Scholar 

  41. Takeuchi O, Akira S (2007) Recognition of viruses by innate immunity. Immunol Rev 220:214–224

    Article  CAS  PubMed  Google Scholar 

  42. Kitamura H, Matsuzaki Y, Kimura K, Nakano H, Imaizumi T, Satoh K et al (2007) Cytokine modulation of retinoic acid-inducible gene-I (RIG-I) expression in human epidermal keratinocytes. J Dermatol Sci 45(2):127–134

    Article  CAS  PubMed  Google Scholar 

  43. Hardison SE, Brown GD (2012) C-type lectin receptors orchestrate antifungal immunity. Nat Immunol 13(9):817–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Braff MH, Bardan A, Nizet V, Gallo RL (2005) Cutaneous defense mechanisms by antimicrobial peptides. J Invest Dermatol 125(1):9–13

    Article  CAS  PubMed  Google Scholar 

  45. Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30(3):131–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gallo RL, Murakami M, Ohtake T, Zaiou M (2002) Biology and clinical relevance of naturally occurring antimicrobial peptides. J Allergy Clin Immunol 110(6):823–831

    Article  CAS  PubMed  Google Scholar 

  47. Froy O (2005) Regulation of mammalian defensin expression by toll-like receptor-dependent and independent signalling pathways. Cell Microbiol 7(10):1387–1397

    Article  CAS  PubMed  Google Scholar 

  48. Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M, Beisner J et al (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469(7330):419–423

    Article  CAS  PubMed  Google Scholar 

  49. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250

    Article  CAS  PubMed  Google Scholar 

  50. Bernard JJ, Gallo RL (2011) Protecting the boundary: the sentinel role of host defense peptides in the skin. Cell Mol Life Sci 68(13):2189–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Salpietro C, Rigoli L, Miraglia Del Giudice M, Cuppari C, Di Bella C, Salpietro A et al (2011) TLR2 and TLR4 gene polymorphisms and atopic dermatitis in Italian children: a multicenter study. Int J Immunopathol Pharmacol 24(4 Suppl):33–40

    CAS  PubMed  Google Scholar 

  52. Novak N, Yu CF, Bussmann C, Maintz L, Peng WM, Hart J et al (2007) Putative association of a TLR9 promoter polymorphism with atopic eczema. Allergy 62(7):766–772

    Article  CAS  PubMed  Google Scholar 

  53. Moller-Larsen S, Nyegaard M, Haagerup A, Vestbo J, Kruse TA, Borglum AD (2008) Association analysis identifies TLR7 and TLR8 as novel risk genes in asthma and related disorders. Thorax 63(12):1064–1069

    Article  CAS  PubMed  Google Scholar 

  54. Hasannejad H, Takahashi R, Kimishima M, Hayakawa K, Shiohara T (2007) Selective impairment of Toll-like receptor 2-mediated proinflammatory cytokine production by monocytes from patients with atopic dermatitis. J Allergy Clin Immunol 120(1):69–75

    Article  CAS  PubMed  Google Scholar 

  55. Niebuhr M, Lutat C, Sigel S, Werfel T (2009) Impaired TLR-2 expression and TLR-2-mediated cytokine secretion in macrophages from patients with atopic dermatitis. Allergy 64(11):1580–1587

    Article  CAS  PubMed  Google Scholar 

  56. Schroder NW, Morath S, Alexander C, Hamann L, Hartung T, Zahringer U et al (2003) Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem 278(18):15587–15594

    Article  PubMed  Google Scholar 

  57. Tada H, Nemoto E, Shimauchi H, Watanabe T, Mikami T, Matsumoto T et al (2002) Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner. Microbiol Immunol 46(7):503–512

    Article  CAS  PubMed  Google Scholar 

  58. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T et al (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347(15):1151–1160

    Article  CAS  PubMed  Google Scholar 

  59. Howell MD, Wollenberg A, Gallo RL, Flaig M, Streib JE, Wong C et al (2006) Cathelicidin deficiency predisposes to eczema herpeticum. J Allergy Clin Immunol 117(4):836–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B et al (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449(7162):564–569

    Article  CAS  PubMed  Google Scholar 

  61. Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276(8):5707–5713

    Article  CAS  PubMed  Google Scholar 

  62. Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H et al (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272(24):15258–15263

    Article  CAS  PubMed  Google Scholar 

  63. Kim J (2005) Review of the innate immune response in acne vulgaris: activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology 211(3):193–198

    Article  CAS  PubMed  Google Scholar 

  64. Qin M, Pirouz A, Kim MH, Krutzik SR, Garban HJ, Kim J (2013) Propionibacterium acnes induces IL-1beta secretion via the NLRP3 inflammasome in human monocytes. J Invest Dermatol 134(2):381–388

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yamasaki K, Kanada K, Macleod DT, Borkowski AW, Morizane S, Nakatsuji T et al (2011) TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J Invest Dermatol 131(3):688–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A et al (2007) Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 13(8):975–980

    Article  CAS  PubMed  Google Scholar 

  67. Sfriso P, Caso F, Tognon S, Galozzi P, Gava A, Punzi L (2012) Blau syndrome, clinical and genetic aspects. Autoimmun Rev 12(1):44–51

    Article  CAS  PubMed  Google Scholar 

  68. Kanazawa N, Okafuji I, Kambe N, Nishikomori R, Nakata-Hizume M, Nagai S et al (2005) Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. Blood 105(3):1195–1197

    Article  CAS  PubMed  Google Scholar 

  69. Goldbach-Mansky R, Kastner DL (2009) Autoinflammation: the prominent role of IL-1 in monogenic autoinflammatory diseases and implications for common illnesses. J Allergy Clin Immunol 124(6):1141–1149; quiz 1150–1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naotomo Kambe M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Satoh, T., Kambe, N. (2016). Innate Immunity. In: Kabashima, K. (eds) Immunology of the Skin. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55855-2_16

Download citation

Publish with us

Policies and ethics