Skip to main content

Photochemically Induced Endothelial Injury

  • Chapter
  • First Online:
Mouse Models of Vascular Diseases
  • 1077 Accesses

Abstract

Thrombosis and intimal hyperplasia occur in the development of restenosis after coronary angioplasty or the progression of atherosclerosis. The development and use of animal models are thus important for understanding the mechanisms involved in thrombus formation and intimal thickening and for evaluating potential therapies. Photochemically induced thrombosis and neointima formation following endothelial injury are initiated by the reactions between a photosensitizer, rose bengal, and green light (wavelength, 540 nm). The basic mechanism for endothelial injury in this model is that the photoexcited dye produces a singlet molecular oxygen by “photodynamic type II” energy transfer to molecular oxygen. This highly reactive oxygen species may react with structural proteins and lipids in the cell membrane to initiate direct peroxidation reactions leading to endothelial membrane damage, thus providing the initial stimulus for platelet thrombus formation, followed by intimal hyperplasia. The models of such vascular diseases created in the mouse are valuable especially since a variety of transgenic or gene knockout mice is now available for identifying factors involved in the development of thrombosis and intimal hyperplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nakashima M. A novel photochemical model for thrombosis research and evaluation of antithrombotic and thrombolytic agents. New York: Churchill Livingstone; 1994.

    Google Scholar 

  2. Romson JL, Haack DW, Lucchesi BR. Electrical induction of coronary artery thrombosis in the ambulatory canine: a model for in vivo evaluation of anti-thrombotic agents. Thromb Res. 1980;17(6):841–53.

    Article  CAS  PubMed  Google Scholar 

  3. Massad L, Plotkine M, Capdeville C, Boulu RG. Electrically induced arterial thrombosis model in the conscious rat. Thromb Res. 1987;48(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  4. Seiffge D, Weithmann KU. Surprising effects of the sequential administration of pentoxifylline and low dose acetylsalicylic acid on thrombus formation. Thromb Res. 1987;46(2):371–83.

    Article  CAS  PubMed  Google Scholar 

  5. Grant L, Becker FF. Mechanisms of inflammation. I. Laser-induced thrombosis, a morphologic analysis. Proc Soc Exp Biol Med. 1965;119(4):1123–9.

    Article  CAS  PubMed  Google Scholar 

  6. Cattaneo M, Winocour PD, Somers DA, Groves HM, Kinlough-Rathbone RL, Packham MA, et al. Effect of ticlopidine on platelet aggregation, adherence to damaged vessels, thrombus formation and platelet survival. Thromb Res. 1985;37(1):29–43.

    Article  CAS  PubMed  Google Scholar 

  7. Moore S, Friedman RJ, Singal DP, Gauldie J, Blajchman MA, Roberts RS. Inhibition of injury induced thromboatherosclerotic lesions by anti-platelet serum in rabbits. Thromb Haemost. 1976;35(1):70–81.

    CAS  PubMed  Google Scholar 

  8. Klement P, Borm A, Hirsh J, Maraganore J, Wilson G, Weitz J. The effect of thrombin inhibitors on tissue plasminogen activator induced thrombolysis in a rat model. Thromb Haemost. 1992;68(1):64–8.

    CAS  PubMed  Google Scholar 

  9. Steele PM, Chesebro JH, Stanson AW, Holmes Jr DR, Dewanjee MK, Badimon L, et al. Balloon angioplasty. Natural history of the pathophysiological response to injury in a pig model. Circ Res. 1985;57(1):105–12.

    Article  CAS  PubMed  Google Scholar 

  10. Mayer Jr JE, Hammond GL. Dipyridamole and aspirin tested against an experimental model of thrombosis. Ann Surg. 1973;178(1):108–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kurz KD, Main BW, Sandusky GE. Rat model of arterial thrombosis induced by ferric chloride. Thromb Res. 1990;60(4):269–80.

    Article  CAS  PubMed  Google Scholar 

  12. Suzuki Y, Kondo K, Ikeda Y, Umemura K. Antithrombotic effect of geniposide and genipin in the mouse thrombosis model. Planta Med. 2001;67(9):807–10.

    Article  CAS  PubMed  Google Scholar 

  13. Kondo K, Suzuki Y, Ikeda Y, Umemura K. Genistein, an isoflavone included in soy, inhibits thrombotic vessel occlusion in the mouse femoral artery and in vitro platelet aggregation. Eur J Pharmacol. 2002;455(1):53–7.

    Article  CAS  PubMed  Google Scholar 

  14. Cheng J, Kondo K, Suzuki Y, Ikeda Y, Meng X, Umemura K. Inhibitory effects of total flavones of Hippophae rhamnoides L on thrombosis in mouse femoral artery and in vitro platelet aggregation. Life Sci. 2003;72(20):2263–71.

    Article  CAS  PubMed  Google Scholar 

  15. Grad E, Golomb M, Koroukhov N, Lawson JA, Lotan C, Fitzgerald GA, et al. Aspirin reduces the prothrombotic activity of C-reactive protein. J Thromb Haemost. 2009;7(8):1393–400.

    Article  CAS  PubMed  Google Scholar 

  16. Danenberg HD, Szalai AJ, Swaminathan RV, Peng L, Chen Z, Seifert P, et al. Increased thrombosis after arterial injury in human C-reactive protein-transgenic mice. Circulation. 2003;108(5):512–5.

    Article  CAS  PubMed  Google Scholar 

  17. Nagashima M, Yin ZF, Zhao L, White K, Zhu Y, Lasky N, et al. Thrombin-activatable fibrinolysis inhibitor (TAFI) deficiency is compatible with murine life. J Clin Invest. 2002;109(1):101–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kalish Y, Malyutin Z, Shai E, Dana M, Avraham L, Jahshan N, et al. A mouse model to study thrombotic complications of thalassemia. Thromb Res. 2015;135(3):521–5.

    Article  CAS  PubMed  Google Scholar 

  19. Hirata Y, Umemura K, Kondoh K, Uematsu T, Nakashima M. Experimental intimal thickening studies using the photochemically induced thrombosis model in the guinea-pig femoral artery. Atherosclerosis. 1994;107(1):117–24.

    Article  CAS  PubMed  Google Scholar 

  20. Umemura K, Nishiyama H, Kikuchi S, Kondo K, Nakashima M. Inhibitory effect of a novel orally active GP IIb/IIIa inhibitor, SC-54684A on intimal thickening in the guinea pig femoral artery. Thromb Haemost. 1996;76(5):799–806.

    PubMed  Google Scholar 

  21. Umemura K, Watanabe S, Kondo K, Hashimoto H, Nakashima M. Inhibitory effect of prostaglandin E1 on intimal thickening following photochemically induced endothelial injury in the rat femoral artery. Atherosclerosis. 1997;130(1–2):11–6.

    Article  CAS  PubMed  Google Scholar 

  22. Kikuchi S, Umemura K, Kondo K, Nakashima M. Tranilast suppresses intimal hyperplasia after photochemically induced endothelial injury in the rat. Eur J Pharmacol. 1996;295(2–3):221–7.

    Article  CAS  PubMed  Google Scholar 

  23. Takiguchi Y, Nagano M, Ikeda Y, Nakashima M. Early administration of YT-146, an adenosine A2 receptor agonist, inhibits neointimal thickening after rat femoral artery endothelium injury. Eur J Pharmacol. 1995;281(2):205–7.

    Article  CAS  PubMed  Google Scholar 

  24. Kikuchi S, Umemura K, Kondo K, Saniabadi AR, Nakashima M. Photochemically Induced Endothelial Injury in the Mouse as a Screening Model for Inhibitors of Vascular Intimal Thickening. Arterioscler Thromb Vasc Biol. 1998;18(7):1069–78.

    Article  CAS  PubMed  Google Scholar 

  25. Miyazawa N, Watanabe S, Matsuda A, Kondo K, Hashimoto H, Umemura K, et al. Role of histamine H1 and H2 receptor antagonists in the prevention of intimal thickening. Eur J Pharmacol. 1998;362(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kondo K, Umemura K, Miyaji M, Nakashima M. Milrinone, a phosphodiesterase inhibitor, suppresses intimal thickening after photochemically induced endothelial injury in the mouse femoral artery. Atherosclerosis. 1999;142(1):133–8.

    Article  CAS  PubMed  Google Scholar 

  27. Shimazawa M, Kondo K, Hara H, Nakashima M, Umemura K. Sulfatides, L- and P-selectin ligands, exacerbate the intimal hyperplasia occurring after endothelial injury. Eur J Pharmacol. 2005;520(1–3):118–26.

    Article  CAS  PubMed  Google Scholar 

  28. Shimazawa M, Watanabe S, Kondo K, Hara H, Nakashima M, Umemura K. Neutrophil accumulation promotes intimal hyperplasia after photochemically induced arterial injury in mice. Eur J Pharmacol. 2005;520(1–3):156–63.

    Article  CAS  PubMed  Google Scholar 

  29. Hokamura K, Inaba H, Nakano K, Nomura R, Yoshioka H, Taniguchi K, et al. Molecular analysis of aortic intimal hyperplasia caused by Porphyromonas gingivalis infection in mice with endothelial damage. J Periodontal Res. 2010;45(3):337–44.

    Article  CAS  PubMed  Google Scholar 

  30. Raskob GE, Angchaisuksiri P, Blanco AN, Buller H, Gallus A, Hunt BJ, et al. Thrombosis: a major contributor to global disease burden. Arterioscler Thromb Vasc Biol. 2014;34(11):2363–71.

    Article  CAS  PubMed  Google Scholar 

  31. Meadows TA, Bhatt DL. Clinical aspects of platelet inhibitors and thrombus formation. Circ Res. 2007;100(9):1261–75.

    Article  CAS  PubMed  Google Scholar 

  32. Moncada S, Vane JR. Arachidonic acid metabolites and the interactions between platelets and blood-vessel walls. N Engl J Med. 1979;300(20):1142–7.

    Article  CAS  PubMed  Google Scholar 

  33. Vandeplassche G, Bernier M, Thone F, Borgers M, Kusama Y, Hearse DJ. Singlet oxygen and myocardial injury: ultrastructural, cytochemical and electrocardiographic consequences of photoactivation of rose bengal. J Mol Cell Cardiol. 1990;22(3):287–301.

    Article  CAS  PubMed  Google Scholar 

  34. Saniabadi AR. Photosensitisers and photochemical reactions. In: Nakashima M, editor. A novel photochemical model for thrombosis research and evaluation of antithrombotic and thrombolytic agents. New York: Churchill Livingstone; 1994. p. 1–19.

    Google Scholar 

  35. Hearse DJ, Kusama Y, Bernier M. Rapid electrophysiological changes leading to arrhythmias in the aerobic rat heart. Photosensitization studies with rose bengal-derived reactive oxygen intermediates. Circ Res. 1989;65(1):146–53.

    Article  CAS  PubMed  Google Scholar 

  36. Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol. 1985;17(5):497–504.

    Article  CAS  PubMed  Google Scholar 

  37. Hirata Y, Takiguchi Y, Wada K, Matsuno H, Umemura K, Uematsu T, et al. Roles of platelet-activating factor, thromboxane A2, ADP and thrombin in thrombogenesis in the guinea pig. Eur J Pharmacol. 1993;231(3):421–5.

    Article  CAS  PubMed  Google Scholar 

  38. Saniabadi AR, Umemura K, Matsumoto N, Sakuma S, Nakashima M. Vessel wall injury and arterial thrombosis induced by a photochemical reaction. Thromb Haemost. 1995;73(5):868–72.

    CAS  PubMed  Google Scholar 

  39. Wada K, Umemura K, Nishiyama H, Saniabadi AR, Takiguchi Y, Nakano M, et al. A chemiluminescent detection of superoxide radical produced by adherent leucocytes to the subendothelium following thrombolysis: studies with a photochemically induced thrombosis model in the guinea pig femoral artery. Atherosclerosis. 1996;122(2):217–24.

    Article  CAS  PubMed  Google Scholar 

  40. Hirata Y, Umemura K, Takiguchi Y, Uematsu T, Nakashima M. A thrombosis model for evaluating thrombolytic agents in the guinea-pig: comparison of t-PA, scu-PA and a novel thrombolytic agent, staphylokinase, on thrombolytic activity. Blood Coagul Fibrinolysis. 1993;4(4):569–75.

    Article  CAS  PubMed  Google Scholar 

  41. Nishiyama H, Umemura K, Wada K, Nakashima M. Antithrombotic Effect of a New Glycoprotein IIb/IIIa Antagonist, SC-52012A: Studies in two Guinea-pig Thrombosis Models. Platelets. 1995;6(5):283–7.

    Article  CAS  PubMed  Google Scholar 

  42. Takiguchi Y, Wada K, Nakashima M. Comparison of the inhibitory effects of the TXA2 receptor antagonist, vapiprost, and other antiplatelet drugs on arterial thrombosis in rats: possible role of TXA2. Thromb Haemost. 1992;68(4):460–3.

    CAS  PubMed  Google Scholar 

  43. Takiguchi Y, Wada K, Nakashima M. Hemodynamic effects on thrombogenesis and platelet aggregation in spontaneously hypertensive rats. Clin Exp Hypertens. 1993;15(1):197–208.

    Article  CAS  PubMed  Google Scholar 

  44. Matsuno H, Uematsu T, Umemura K, Takiguchi Y, Wada K, Nakashima M. Effects of vapiprost, a novel thromboxane receptor antagonist, on thrombus formation and vascular patency after thrombolysis by tissue-type plasminogen activator. Br J Pharmacol. 1992;106(3):533–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Kaku S, Umemura K, Mizuno A, Yano S, Suzuki K, Kawasaki T, et al. Evaluation of a GPIIb/IIIa antagonist YM337 in a primate model of middle cerebral artery thrombosis. Eur J Pharmacol. 1998;345(2):185–92.

    Article  CAS  PubMed  Google Scholar 

  46. Maeda M, Takamatsu H, Furuichi Y, Noda A, Awaga Y, Tatsumi M, et al. Characterization of a novel thrombotic middle cerebral artery occlusion model in monkeys that exhibits progressive hypoperfusion and robust cortical infarction. J Neurosci Methods. 2005;146(1):106–15.

    Article  PubMed  Google Scholar 

  47. Ikeda S, Harada K, Ohwatashi A, Kamikawa Y, Yoshida A, Kawahira K. A new non-human primate model of photochemically induced cerebral infarction. PLoS One. 2013;8(3):e60037.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Westrick RJ, Winn ME, Eitzman DT. Murine models of vascular thrombosis (Eitzman series). Arterioscler Thromb Vasc Biol. 2007;27(10):2079–93.

    Article  CAS  PubMed  Google Scholar 

  49. Lindner V, Fingerle J, Reidy MA. Mouse model of arterial injury. Circ Res. 1993;73(5):792–6.

    Article  CAS  PubMed  Google Scholar 

  50. Clowes AW, Clowes MM. Kinetics of cellular proliferation after arterial injury. II. Inhibition of smooth muscle growth by heparin. Lab Invest. 1985;52(6):611–6.

    CAS  PubMed  Google Scholar 

  51. Fishman JA, Ryan GB, Karnovsky MJ. Endothelial regeneration in the rat carotid artery and the significance of endothelial denudation in the pathogenesis of myointimal thickening. Lab Invest. 1975;32(3):339–51.

    CAS  PubMed  Google Scholar 

  52. Hanke H, Haase KK, Hanke S, Oberhoff M, Hassenstein S, Betz E, et al. Morphological changes and smooth muscle cell proliferation after experimental excimer laser treatment. Circulation. 1991;83(4):1380–9.

    Article  CAS  PubMed  Google Scholar 

  53. Indolfi C, Esposito G, Di Lorenzo E, Rapacciuolo A, Feliciello A, Porcellini A, et al. Smooth muscle cell proliferation is proportional to the degree of balloon injury in a rat model of angioplasty. Circulation. 1995;92(5):1230–5.

    Article  CAS  PubMed  Google Scholar 

  54. Liu MW, Roubin GS, King 3rd SB. Restenosis after coronary angioplasty. Potential biologic determinants and role of intimal hyperplasia. Circulation. 1989;79(6):1374–87.

    Article  CAS  PubMed  Google Scholar 

  55. Ferns GA, Raines EW, Sprugel KH, Motani AS, Reidy MA, Ross R. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science. 1991;253(5024):1129–32.

    Article  CAS  PubMed  Google Scholar 

  56. Lindner V, Reidy MA. Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc Natl Acad Sci U S A. 1991;88(9):3739–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Ip JH, Fuster V, Israel D, Badimon L, Badimon J, Chesebro JH. The role of platelets, thrombin and hyperplasia in restenosis after coronary angioplasty. J Am Coll Cardiol. 1991;17(6 Suppl B):77B–88B.

    Article  CAS  PubMed  Google Scholar 

  58. Nishiyama H, Umemura K, Saniabadi AR, Takiguchi Y, Uematsu T, Nakashima M. Enhancement of thrombolytic efficacy of tissue-type plasminogen activator by adjuvants in the guinea pig thrombosis model. Eur J Pharmacol. 1994;264(2):191–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Umemura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Matsumoto, Y., Umemura, K. (2016). Photochemically Induced Endothelial Injury. In: Sata, M. (eds) Mouse Models of Vascular Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55813-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55813-2_4

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55811-8

  • Online ISBN: 978-4-431-55813-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics