Skip to main content

Muscle Spindles and Intramuscular Ganglia

  • Chapter
  • First Online:
Neuroanatomy and Neurophysiology of the Larynx

Abstract

Information on degree and speed of muscle contraction from within a muscle is necessary in controlling muscle contraction. Muscle spindles are sensory receptors and a source of such information. They consist of fine muscle fibers with an independent motor innervation within a small spindle-shaped capsule of connective tissue embedded in the skeletal muscles. The fine intrafusal muscle fibers are innervated by sensory nerve fibers. The morphology and innervation of intrafusal muscle fibers have been studied, and studies on the physiology of muscle spindles have shown that they may provide not only static information on muscle length and tension but also dynamic information such as contraction speed. In the intrinsic laryngeal muscles, small ganglia of neuronal cell bodies situated within the muscles have been studied and may be part of the sensory innervation of the larynx.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerschner L. Beitrag zur Kenntnis der sensiblen Endorgane. Anat Anz. 1888;3:288–96.

    Google Scholar 

  2. Ruffini A. Osservazioni critiche allo studio del Dott. Andrea Rossi sulle terminazioni nervose di senso della pelle dell’uomo. Arch Internaz. 1893; 11:16.

    Google Scholar 

  3. Sherrington CS. On the anatomical constitution of nerves on skeletal muscles: with remarks on recurrent fibres in the ventral spinal nerve roots. J Physiol. 1894;17:211–58.

    Google Scholar 

  4. Goerttler K. Die Anordnung, Histologie und Histogenese der quergestreiften Muskulature in menschlichen Stimmband. Z Anat Entw Gesh. 1950;115:352–401.

    Article  Google Scholar 

  5. Paulsen K. Untersuchungen uber das Vorkommen und die Zahl von Muskelspindeln im M. vocalis des Menschen. Z Zellforsch. 1958;47:363–6.

    Article  CAS  PubMed  Google Scholar 

  6. Baken RJ. Neuromuscular spindle in intrinsic muscle of human larynx. J Speech Hear Res. 1971;14:513–8.

    Article  CAS  PubMed  Google Scholar 

  7. Grim M. Muscle spindles in the posterior cricoarytenoid muscle of the human larynx. Folia Morphol. 1967;15:124–31.

    CAS  Google Scholar 

  8. Katto Y. Muscle spindle in intrinsic muscles of human larynx: distribution and morphological features. Nippon Jibiinkoka Gakkai Kaiho. 1987;90:59–67.

    CAS  PubMed  Google Scholar 

  9. Hirayama M, Matsui T, Tachibana M, Ibata Y, Mizukoshi O. An electron microscopic study of the muscle spindle in the arytenoid muscle of the human larynx. Arch Otorhinolaryngol. 1987;244:249–52.

    Article  CAS  PubMed  Google Scholar 

  10. Cooper S. Muscle spindles and other muscle receptors. In: Bourne GH, editor. The structure and function of muscle. New York: Academic; 1960. p. 381–420.

    Google Scholar 

  11. Barker D. Morphology of muscle receptors. In: Hunt CC, editor. Handbook of sensory physiology vol 3, pt 2. Berlin: Springer-Verlag; 1974. p. 1–190.

    Google Scholar 

  12. Boyd IA. The motor innervation of mammalian muscle spindles. J Physiol. 1961;159:7–9.

    Google Scholar 

  13. Boyd IA. The structure and innervation of the nuclear bag muscle fibre system and the nuclear chain fibre system in mammalian muscle spindles. Proc R Soc. 1962;B245:81–136.

    Google Scholar 

  14. Spiro AJ, Beilin RL. Human muscle spindle histochemistry. Arch Neurol. 1969;20:271–5.

    Article  CAS  PubMed  Google Scholar 

  15. Kucera J, Dorovini-Zis K. Types of human intrafusal muscle fibers. Muscle Nerve. 1979;2:437–51.

    Article  CAS  PubMed  Google Scholar 

  16. Sahgal V, Morgen CA. Histochemical and morphological changes in human muscle spindle in upper and lower motor neuron lesions. Acta Neuropathol (Berl). 1976;34:41–6.

    Article  CAS  Google Scholar 

  17. Yellin H. A histochemical study of muscle spindles and their relationship to extrafusal fiber types in the rat. Am J Anat. 1969;125:31–46.

    Article  CAS  PubMed  Google Scholar 

  18. Barker D, Stacey MJ. Rabbit intrafusal muscle fibres. J Physiol. 1970;210:70–2.

    Google Scholar 

  19. Ovalle WK, Smith RS. Histochemical identification of three types of intrafusal muscle fibres in the cat and monkey based on the myosin ATPase reaction. Can J Physiol Pharmacol. 1972;50:195–202.

    Article  CAS  PubMed  Google Scholar 

  20. Saito M, Tomonaga M, Hirayama K, Narabayashi H. Histochemical study of normal human muscle spindle. Histochemical classification of intrafusal muscle fibers and intrafusal nerve endings. J Neurol. 1977;216:79–89.

    Article  CAS  PubMed  Google Scholar 

  21. Ogata T, Mori M. Histochemical study of oxidative enzymes in vertebrate muscles. J Histochem Cytochem. 1964;12:171–82.

    Article  CAS  PubMed  Google Scholar 

  22. Banks RW, Harker DW, Stacey MJ. A study of mammalian muscle fibres using a combined histochemical and ultrastructural technique. J Anat. 1977;123:783–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Guth L, Samaha FJ. Procedure for the histochemical demonstration of actomyosin ATPase. Exp Neurol. 1970;28:365–7.

    Article  CAS  PubMed  Google Scholar 

  24. Bewick GS, Banks RW. Mechanotransduction in the muscle spindle. Special issue on physiological aspects of mechano-sensing. Eur J Physiol. 2014. doi:10.1007/s00424-014-1536-9.

    Google Scholar 

  25. Matthews PB. The static and dynamic fusimotor fibres – their present status. Bull Schweiz Akad Med Wiss. 1971;27:235–55.

    CAS  PubMed  Google Scholar 

  26. Hunt CC. The physiology of muscle receptors. In: Hunt CC, editor. Handbook of sensory physiology vol3, pt2. Berlin: Springer-Verlag; 1974. p. 191–234.

    Google Scholar 

  27. Boyd IA, Gladden MH. Morphology of mammalian muscle spindles, a review. In: Boyd IA, Gladden MH, editors. The muscle spindle. London: Macmillan; 1985. p. 3–22.

    Chapter  Google Scholar 

  28. Laporte Y. The motor innervation of the mammalian muscle spindle. In: Porter R, editor. Studies in neurophysiology. Cambridge: Cambridge University Press; 1978. p. 45–59.

    Google Scholar 

  29. Barker D, Emonet-Denand F, Laporte Y, Stacey MJ. Identification of the intrafusal endings of skeletofusimotor axons in the cat. Brain Res. 1980;185:227–37.

    Article  CAS  PubMed  Google Scholar 

  30. Boyd IA, Ward J. Motor control of nuclear bag and nuclear chain intrafusal fibres in isolated living muscle spindles from the cat. J Physiol. 1975;244:83–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Adrian ED, Zotterman Y. The impulses produced by sensory nerve endings: part II. The response of a single end-organ. J Physiol. 1926;61:151–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tamura K, Koike Y. Enzyme-histochemistry of muscle spindles in human intrinsic laryngeal muscles. Jibiinkoka Rinsyo (Supp). 1999;101:45–9.

    Google Scholar 

  33. Kattou Y, Okamura H. Morphological study of muscle spindles in arytenoid muscle of human larynx. Nippon Jibiinkoka Gakkai Kaiho. 1983;86:661–5.

    Article  CAS  PubMed  Google Scholar 

  34. Andrew BL. The respiratory displacement of the larynx: a study of innervation of accessory respiratory muscles. J Physiol. 1955;130:474–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sengupta BN, Sengupta S. Muscle spindles in the inferior constrictor pharyngis muscle of the crab-eating monkey (Macaca irus). Acta Anat (Basel). 1978;100:132–5.

    Article  CAS  Google Scholar 

  36. Lennartsson B. Muscle spindles in the human anterior digastric muscle. Acta Odontol Scand. 1979;37:329–33.

    Article  CAS  PubMed  Google Scholar 

  37. Muhl ZF, Kotov O. Muscle spindles in the digastric muscle of the rabbit. J Dent Res. 1988;67:1243–5.

    Article  CAS  PubMed  Google Scholar 

  38. Sano Y. Shinkei-Kagaku (Keitaigakuteki Kiso) Vol.1 Neuron and Glia. Kyoto: Kinpodo; 1995. pp. 475–86.

    Google Scholar 

  39. Gairns FW, Garven HSD. Ganglion cells in the mammalian tongue. J Physiol Lond. 1952;118:53–4.

    Article  Google Scholar 

  40. Fitzgerald MJ, Alexander RW. The intramuscular ganglia of the cat’s tongue. J Anat. 1969;105:27–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhargava KN, Bhargava AK. Some anatomical and neurohistochemical observations on the chick tongue. Mikroskopie. 1974;30:193–201.

    CAS  PubMed  Google Scholar 

  42. Baecker B, Yanaihara N, Forssmann WG. VIP innervation of the tongue in vertebrates. Anat Embryol (Berl). 1983;167:173–89.

    Article  CAS  Google Scholar 

  43. Inoue K, Kitada Y. Parasympathetic postganglionic cells in the glossopharyngeal nerve trunk and their relationship to unmyelinated nerve fibers in the fungiform papillae of the frog. Anat Rec. 1991;230:131–5.

    Article  CAS  PubMed  Google Scholar 

  44. Tadaki N, Hisa Y, Uno T, Koike S, Okamura H, Ibata Y. Neurotransmitters for the canine inferior pharyngeal constrictor muscle. Otolaryngol Head Neck Surg. 1995;113:755–9.

    Article  CAS  PubMed  Google Scholar 

  45. Neuhuber WL, Worl J, Berthoud HR, Conte B. NADPH-diaphorase- positive nerve fibers associated with motor endplates in the rat esophagus: new evidence for co-innervation of striated muscle by enteric neurons. Cell Tissue Res. 1994;276:23–30.

    Article  CAS  PubMed  Google Scholar 

  46. Wyke BD, Kirshner JA. Neurology of the larynx. In: Hinchcliffe R, Harrison D, editors. Scientific foundation of otolaryngology. London: Heinemann; 1976. p. 546–74.

    Google Scholar 

  47. Hisa Y. Fluorescence histochemical studies on the noradrenergic innervation of the canine larynx. Acta Anat. 1982;113:15–25.

    Article  CAS  PubMed  Google Scholar 

  48. Wallach JH, Rybicki KJ, Kaufman MP. Anatomical localization of the cells of origin of efferent fibers in the superior laryngeal and recurrent laryngeal nerves of dogs. Brain Res. 1983;261:307–11.

    Article  CAS  PubMed  Google Scholar 

  49. Hisa Y, Tadaki N, Uno T, Koike S, Tanaka M, Okamura H, Ibata Y. Nitrergic innervation of the rat larynx measured by nitric oxide synthase immunohistochemistry and NADPH-diaphorase histochemistry. Ann Otol Rhinol Laryngol. 1996;105:550–4.

    Article  CAS  PubMed  Google Scholar 

  50. Modin A, Weitzberg E, Hokfelt T, Lundberg JM. Nitric oxide synthase in the pig autonomic nervous system in relation to the influence of NG-nitro-L-arginine on sympathetic and parasympathetic vascular control in vivo. Neuroscience. 1994;62:189–203.

    Article  CAS  PubMed  Google Scholar 

  51. Holzer P, Wachter C, Heinemann A, Jocic M, Lippe IT, Herbert MK. Sensory nerves, nitric oxide and NANC vasodilatation. Arch Int Pharmacodyn. 1995;329:67–79.

    CAS  PubMed  Google Scholar 

  52. Papka R, McNeill D, Thompson D, Schmidt H. Nitric oxide nerves in the uterus are parasympathetic, sensory, and contain neuropeptides. Cell Tissue Res. 1995;279:339–49.

    Article  CAS  PubMed  Google Scholar 

  53. Xu Z, Li P, Tong C, Figueroa J, Tobin JR, Eisenach JC. Location and characteristics of nitric oxide synthase in sheep spinal cord and its interaction with alpha(2)-adrenergic and cholinergic antinociception. Anesthesiology. 1996;84:890–9.

    Article  CAS  PubMed  Google Scholar 

  54. Wu W, Liuzzi FJ, Schinco FP, Depto AS, Li Y, Mong JA, Dawson TM, Snyder SH. Neuronal nitric oxide synthase is induced in spinal neurons by traumatic injury. Neuroscience. 1994;61:719–26.

    Article  CAS  PubMed  Google Scholar 

  55. Yu WH. Nitric oxide synthase in motor neurons after axotomy. J Histochem Cytochem. 1994;42:451–7.

    Article  CAS  PubMed  Google Scholar 

  56. Elze C. Kurze Mitteilung uber ein Ganglion in Nervus laryngeus superiorus des Menschen. Zeitschr Anat Entwicklungsgesch. 1923;69:630.

    Article  Google Scholar 

  57. Geronzi G. On the presence of nerve ganglia intramuscularly in certain intrinsic muscles of the larynx. Arch Int Laryng. 1904;6:854–65.

    Google Scholar 

  58. Hisa Y, Koike S, Uno T, Tadaki N, Tanaka M, Okamura H, Ibata Y. Nitrergic neurons in the canine intrinsic laryngeal muscle. Neurosci Lett. 1996;203:45–8.

    Article  CAS  PubMed  Google Scholar 

  59. Desaki J, Yamagata T, Kawakita S. The distribution of ganglion cells in the posterior cricoarytenoid muscle of the normal adult rat. A light and electron microscopic study. Arch Histol Cytol. 2003;66(1):27–36.

    Article  PubMed  Google Scholar 

  60. Keene MF. Muscle spindles in human laryngeal muscles. J Anat. 1961;95:25–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rossi G, Cortesina G. Morphological study of the laryngeal muscles in man. Insertions and courses of the muscle fibers, motor end-plates and proprioceptors. Acta Otolaryngol. 1965;59:575–92.

    Article  CAS  PubMed  Google Scholar 

  62. Baken RJ, Noback R. Neuromuscular spindles in intrinsic muscles of a human larynx. J Speech Hear Res. 1971;14:513–8.

    Article  CAS  PubMed  Google Scholar 

  63. Koike S, Hisa Y. Neurochemical substances in neurons of the canine intrinsic laryngeal muscles. Acta Otolaryngol. 1999;119:267–70.

    Article  CAS  PubMed  Google Scholar 

  64. Koike S, Uno T, Bamba H, Shibata T, Okano H, Hisa Y. Distribution of vanilloid receptors in the rat laryngeal innervation. Acta Otolaryngol. 2004;124:515–9.

    Article  CAS  PubMed  Google Scholar 

  65. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat – activated ion channel in the pain pathway. Nature. 1997;389:816–24.

    Article  CAS  PubMed  Google Scholar 

  66. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature. 1999;398:436–41.

    Article  CAS  PubMed  Google Scholar 

  67. Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature. 2001;413:203–10.

    Article  CAS  PubMed  Google Scholar 

  68. Mizumura K, Kumazawa T. Modification of nociceptic responses by inflammatory mediators and second messengers implicated in their action- a study in canine testicular polymodal receptors. Prog Brain Res. 1996;113:115–41.

    Article  CAS  PubMed  Google Scholar 

  69. Wood JN, Perl ER. Pain. Curr Opin Genet Dev. 1999;9:328–32.

    Article  CAS  PubMed  Google Scholar 

  70. Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science. 2000;288:1765–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Hisa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Koike, S., Mukudai, S., Hisa, Y. (2016). Muscle Spindles and Intramuscular Ganglia. In: Hisa, Y. (eds) Neuroanatomy and Neurophysiology of the Larynx. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55750-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55750-0_2

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55749-4

  • Online ISBN: 978-4-431-55750-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics