Skip to main content

Basic Functions and Clinical Applications

  • Chapter
  • First Online:
Clinical Applications of Magnetoencephalography

Abstract

Investigation for motor system by magnetoencephalographic (MEG) recordings has focused on detecting the primary motor area. In order to collect data with high S/N ratio, selection of a motor paradigm and an analysis method to assure events time-locked to movement onset is important. Self-paced movement paradigm has been widely employed, because the same paradigm in electroencephalographic (EEG) and subdural recordings has provided bunch of physiological data. The motor field (MF) component in movement-related cortical magnetic fields (MRCFs) is believed to reflect the final stage of motor execution in MI. Frequency analysis on the background rhythm related to movement can be also utilized to estimate motor-related areas.

Considering the difficulties in performing the self-paced movement, easier motor paradigms such as isometric contraction or cyclic repetitive movements have been recently introduced. Although estimated sources from these paradigms have provided sources of reasonable locations, physiological significance should await for further study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bates JA. Electrical activity of the cortex accompanying movement. J Physiol. 1951;113(2–3):240–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kornhuber HH, Deecke L. Changes in the brain potential in voluntary movements and passive movements in man: readiness potential and reafferent potentials. Pflugers Arch Gesamten Physiol Menschen Tiere. 1965;284:1–17.

    Article  CAS  Google Scholar 

  3. Shibasaki H, Barrett G, Halliday E, Halliday AM. Components of the movement-related cortical potential and their scalp topography. Electroencephalogr Clin Neurophysiol. 1980;49(3–4):213–26.

    Article  CAS  PubMed  Google Scholar 

  4. Vaughan Jr HG, Costa LD, Ritter W. Topography of the human motor potential. Electroencephalogr Clin Neurophysiol. 1968;25(1):1–10.

    Article  PubMed  Google Scholar 

  5. Ikeda A, Luders HO, Burgess RC, Shibasaki H. Movement-related potentials recorded from supplementary motor area and primary motor area. Role of supplementary motor area in voluntary movements. Brain: J Neurol. 1992;115(Pt 4):1017–43.

    Article  Google Scholar 

  6. Neshige R, Luders H, Shibasaki H. Recording of movement-related potentials from scalp and cortex in man. Brain: J Neurol. 1988;111(Pt 3):719–36.

    Google Scholar 

  7. Deecke L, Boschert J, Weinberg H, Brickett P. Magnetic fields of the human brain (Bereitschaftsmagnetfeld) preceding voluntary foot and toe movements. Exp Brain Res. 1983;52(1):81–6.

    Article  CAS  PubMed  Google Scholar 

  8. Antervo A, Hari R, Katila T, Poutanen T, Seppanen M, Tuomisto T. Cerebral magnetic fields preceding self-paced plantar flexions of the foot. Acta Neurol Scand. 1983;68(4):213–7.

    Article  CAS  PubMed  Google Scholar 

  9. Hari R, Antervo A, Salmi T. Slow EEG potentials preceding self-paced plantar flexions of hand and foot. Acta Physiol Scand. 1983;119(1):55–9. doi:10.1111/j.1748-1716.1983.tb07305.x.

    Article  CAS  PubMed  Google Scholar 

  10. Cheyne D, Weinberg H. Neuromagnetic fields accompanying unilateral finger movements: pre-movement and movement-evoked fields. Exp Brain Res. 1989;78(3):604–12.

    Article  CAS  PubMed  Google Scholar 

  11. Kristeva-Feige R, Walter H, Lutkenhoner B, Hampson S, Ross B, Knorr U, Steinmetz H, Cheyne D. A neuromagnetic study of the functional organization of the sensorimotor cortex. Eur J Neurosci. 1994;6(4):632–9.

    Article  CAS  PubMed  Google Scholar 

  12. Nagamine T, Toro C, Balish M, Deuschl G, Wang B, Sato S, Shibasaki H, Hallett M. Cortical magnetic and electric fields associated with voluntary finger movements. Brain Topogr. 1994;6(3):175–83.

    Article  CAS  PubMed  Google Scholar 

  13. Toma K, Nagamine T, Yazawa S, Terada K, Ikeda A, Honda M, Oga T, Shibasaki H. Desynchronization and synchronization of central 20-Hz rhythms associated with voluntary muscle relaxation: a magnetoencephalographic study. Exp Brain Res. 2000;134(4):417–25. doi:10.1007/s002210000483.

    Article  CAS  PubMed  Google Scholar 

  14. Ugawa Y, Uesaka Y, Terao Y, Yumoto M, Hnajima R, Sakai K. Pathophysiology of sensorimotor cortex in cortical myoclonus. Clin Neurosci. 1995;3(4):198–202.

    PubMed  Google Scholar 

  15. Mima T, Nagamine T, Ikeda A, Yazawa S, Kimura J, Shibasaki H. Pathogenesis of cortical myoclonus studied by magnetoencephalography. Ann Neurol. 1998;43(5):598–607. doi:10.1002/ana.410430507.

    Article  CAS  PubMed  Google Scholar 

  16. Timmermann L, Gross J, Schmitz F, Freund HJ, Schnitzler A. Involvement of the motor cortex in pseudochoreoathetosis. Mov Disord: Off J Mov Disord Soc. 2001;16(5):876–81.

    Article  CAS  Google Scholar 

  17. Sudmeyer M, Pollok B, Hefter H, Gross J, Wojtecki L, Butz M, Timmermann L, Schnitzler A. Postural tremor in Wilson’s disease: a magnetoencephalographic study. Mov Disord: Off J Mov Disord Soc. 2004;19(12):1476–82. doi:10.1002/mds.20240.

    Article  Google Scholar 

  18. Butz M, Timmermann L, Gross J, Pollok B, Sudmeyer M, Kircheis G, Haussinger D, Schnitzler A. Cortical activation associated with asterixis in manifest hepatic encephalopathy. Acta Neurol Scand. 2014;130(4):260–7. doi:10.1111/ane.12217.

    Article  CAS  PubMed  Google Scholar 

  19. Volkmann J, Joliot M, Mogilner A, Ioannides AA, Lado F, Fazzini E, Ribary U, Llinas R. Central motor loop oscillations in parkinsonian resting tremor revealed by magnetoencephalography. Neurology. 1996;46(5):1359–70.

    Article  CAS  PubMed  Google Scholar 

  20. Oga T, Ikeda A, Nagamine T, Sumi E, Matsumoto R, Akiguchi I, Kimura J, Shibasaki H. Implication of sensorimotor integration in the generation of periodic dystonic myoclonus in subacute sclerosing panencephalitis (SSPE). Mov Disord: Off J Mov Disord Soc. 2000;15(6):1173–83.

    Article  CAS  Google Scholar 

  21. Kristeva R, Cheyne D, Deecke L. Neuromagnetic fields accompanying unilateral and bilateral voluntary movements: topography and analysis of cortical sources. Electroencephalogr Clin Neurophysiol. 1991;81(4):284–98.

    Article  CAS  PubMed  Google Scholar 

  22. Shibasaki H, Hallett M. What is the Bereitschaftspotential? Clin Neurophysiol: Off J Int Fed Clin Neurophysiol. 2006;117(11):2341–56. doi:10.1016/j.clinph.2006.04.025.

    Article  Google Scholar 

  23. Hoshiyama M, Kakigi R, Berg P, Koyama S, Kitamura Y, Shimojo M, Watanabe S, Nakamura A. Identification of motor and sensory brain activities during unilateral finger movement: spatiotemporal source analysis of movement-associated magnetic fields. Exp Brain Res. 1997;115(1):6–14.

    Article  CAS  PubMed  Google Scholar 

  24. Onishi H, Sugawara K, Yamashiro K, Sato D, Suzuki M, Kirimoto H, Tamaki H, Murakami H, Kameyama S. Neuromagnetic activation following active and passive finger movements. Brain Behav. 2013;3(2):178–92. doi:10.1002/brb3.126.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Niimi M, Ohira T, Akiyama T, Hiraga K, Kaneko Y, Ochiai M, Fukunaga A, Kobayashi M, Kawase T. Source analysis of the magnetic field evoked during self-paced finger movements. Neurol Res. 2008;30(3):239–43. doi:10.1179/016164107X230801.

    Article  PubMed  Google Scholar 

  26. Weinberg H, Cheyne D, Crisp D. Electroencephalographic and magnetoencephalographic studies of motor function. Adv Neurol. 1990;54:193–205.

    CAS  PubMed  Google Scholar 

  27. Uutela K, Hamalainen M, Somersalo E. Visualization of magnetoencephalographic data using minimum current estimates. NeuroImage. 1999;10(2):173–80. doi:10.1006/nimg.1999.0454.

    Article  CAS  PubMed  Google Scholar 

  28. Hamalainen MS, Ilmoniemi RJ. Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput. 1994;32(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  29. Hillebrand A, Barnes GR. Beamformer analysis of MEG data. Int Rev Neurobiol. 2005;68:149–71. doi:10.1016/S0074-7742(05)68006-3.

    Article  PubMed  Google Scholar 

  30. Walter WG. The contingent negative variation: an electro-cortical sign of sensori-motor reflex association in man. Prog Brain Res. 1968;22:364–77. doi:10.1016/S0079-6123(08)63519-0.

    Article  CAS  PubMed  Google Scholar 

  31. Basile LF, Rogers RL, Bourbon WT, Papanicolaou AC. Slow magnetic flux from human frontal cortex. Electroencephalogr Clin Neurophysiol. 1994;90(2):157–65.

    Article  CAS  PubMed  Google Scholar 

  32. Elbert T, Rockstroh B, Hampson S, Pantev C, Hoke M. The magnetic counterpart of the contingent negative variation. Electroencephalogr Clin Neurophysiol. 1994;92(3):262–72.

    Article  CAS  PubMed  Google Scholar 

  33. Hultin L, Rossini P, Romani GL, Hogstedt P, Tecchio F, Pizzella V. Neuromagnetic localization of the late component of the contingent negative variation. Electroencephalogr Clin Neurophysiol. 1996;98(6):435–48.

    Article  CAS  PubMed  Google Scholar 

  34. Gomez CM, Fernandez A, Maestu F, Amo C, Gonzalez-Rosa JJ, Vaquero E, Ortiz T. Task-specific sensory and motor preparatory activation revealed by contingent magnetic variation. Brain Res Cogn Brain Res. 2004;21(1):59–68. doi:10.1016/j.cogbrainres.2004.05.005.

    Article  PubMed  Google Scholar 

  35. Babiloni C, Brancucci A, Pizzella V, Romani GL, Tecchio F, Torquati K, Zappasodi F, Arendt-Nielsen L, Chen AC, Rossini PM. Contingent negative variation in the parasylvian cortex increases during expectancy of painful sensorimotor events: a magnetoencephalographic study. Behav Neurosci. 2005;119(2):491–502. doi:10.1037/0735-7044.119.2.491.

    Article  PubMed  Google Scholar 

  36. Matsumoto R, Ikeda A, Ohara S, Matsuhashi M, Baba K, Yamane F, Hori T, Mihara T, Nagamine T, Shibasaki H. Motor-related functional subdivisions of human lateral premotor cortex: epicortical recording in conditional visuomotor task. Clin Neurophysiol: Off J Int Fed Clin Neurophysiol. 2003;114(6):1102–15.

    Article  Google Scholar 

  37. Chatrian GE, Petersen MC, Lazarte JA. The blocking of the rolandic wicket rhythm and some central changes related to movement. Electroencephalogr Clin Neurophysiol. 1959;11(3):497–510.

    Article  CAS  PubMed  Google Scholar 

  38. Pfurtscheller G, Aranibar A. Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr Clin Neurophysiol. 1977;42(6):817–26.

    Article  CAS  PubMed  Google Scholar 

  39. Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol: Off J Int Fed Clin Neurophysiol. 1999;110(11):1842–57.

    Article  CAS  Google Scholar 

  40. Salmelin R, Hari R. Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience. 1994;60(2):537–50.

    Article  CAS  PubMed  Google Scholar 

  41. Nagamine T, Kajola M, Salmelin R, Shibasaki H, Hari R. Movement-related slow cortical magnetic fields and changes of spontaneous MEG- and EEG-brain rhythms. Electroencephalogr Clin Neurophysiol. 1996;99(3):274–86.

    Article  CAS  PubMed  Google Scholar 

  42. Gerloff C, Uenishi N, Nagamine T, Kunieda T, Hallett M, Shibasaki H. Cortical activation during fast repetitive finger movements in humans: steady-state movement-related magnetic fields and their cortical generators. Electroencephalogr Clin Neurophysiol. 1998;109(5):444–53.

    Article  CAS  PubMed  Google Scholar 

  43. Conway BA, Halliday DM, Farmer SF, Shahani U, Maas P, Weir AI, Rosenberg JR. Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol. 1995;489(Pt 3):917–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Salenius S, Portin K, Kajola M, Salmelin R, Hari R. Cortical control of human motoneuron firing during isometric contraction. J Neurophysiol. 1997;77(6):3401–5.

    CAS  PubMed  Google Scholar 

  45. Salenius S, Salmelin R, Neuper C, Pfurtscheller G, Hari R. Human cortical 40 Hz rhythm is closely related to EMG rhythmicity. Neurosci Lett. 1996;213(2):75–8.

    Article  CAS  PubMed  Google Scholar 

  46. Brown P, Salenius S, Rothwell JC, Hari R. Cortical correlate of the Piper rhythm in humans. J Neurophysiol. 1998;80(6):2911–7.

    CAS  PubMed  Google Scholar 

  47. Halliday DM, Conway BA, Farmer SF, Rosenberg JR. Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans. Neurosci Lett. 1998;241(1):5–8.

    Article  CAS  PubMed  Google Scholar 

  48. Baker SN, Olivier E, Lemon RN. Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. J Physiol. 1997;501(Pt 1):225–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Pohja M, Salenius S. Modulation of cortex-muscle oscillatory interaction by ischaemia-induced deafferentation. Neuroreport. 2003;14(3):321–4. doi:10.1097/01.wnr.0000058518.74643.96.

    Article  PubMed  Google Scholar 

  50. Ruspantini I, Saarinen T, Belardinelli P, Jalava A, Parviainen T, Kujala J, Salmelin R. Corticomuscular coherence is tuned to the spontaneous rhythmicity of speech at 2–3 Hz. J Neurosci: Off J Soc Neurosci. 2012;32(11):3786–90. doi:10.1523/JNEUROSCI.3191-11.2012.

    Article  CAS  Google Scholar 

  51. Maezawa H, Mima T, Yazawa S, Matsuhashi M, Shiraishi H, Hirai Y, Funahashi M. Contralateral dominance of corticomuscular coherence for both sides of the tongue during human tongue protrusion: an MEG study. NeuroImage. 2014;101:245–55. doi:10.1016/j.neuroimage.2014.07.018.

    Article  PubMed  Google Scholar 

  52. Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R. Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Natl Acad Sci U S A. 2001;98(2):694–9. doi:10.1073/pnas.98.2.694.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Bourguignon M, De Tiege X, Op de Beeck M, Pirotte B, Van Bogaert P, Goldman S, Hari R, Jousmaki V. Functional motor-cortex mapping using corticokinematic coherence. NeuroImage. 2011;55(4):1475–9. doi:10.1016/j.neuroimage.2011.01.031.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Nagamine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Nagamine, T., Matsuhashi, M. (2016). Basic Functions and Clinical Applications. In: Tobimatsu, S., Kakigi, R. (eds) Clinical Applications of Magnetoencephalography. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55729-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55729-6_2

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55728-9

  • Online ISBN: 978-4-431-55729-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics