Skip to main content

α-Dystroglycanopathy

  • Chapter
  • First Online:
Translational Research in Muscular Dystrophy

Abstract

α-Dystroglycanopathy encompasses a group of congenital and limb-girdle-type muscular dystrophies that are caused by abnormal glycosylation of α-dystroglycan. α-Dystroglycanopathy is often associated with brain abnormalities including type II lissencephaly and mental retardation. Currently, around 15 genes have been identified in which mutations cause abnormal glycosylation of α-dystroglycan resulting in disease. Dystroglycan is a highly glycosylated peripheral membrane protein that functions as a cell-surface receptor for proteins in the extracellular matrices and synapses. Unique O-mannosyl glycosylation is necessary for the ligand-binding activities of dystroglycan, and some of α-dystroglycanopathy gene products are involved in the process of α-dystroglycan glycosylation. Studies using animal and cell models for α-dystroglycanopathy have contributed to understanding the pathogenesis of this disease and to establishing therapeutic strategies. In this chapter, we review the structure, modification pathways, and physiological roles of dystroglycan glycosylation, as well as their involvement in human diseases, disease pathogenesis, and therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ervasti JM, Ohlendieck K, Kahl SD et al (1990) Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345:315–319

    Article  CAS  PubMed  Google Scholar 

  2. Barresi R, Campbell KP (2006) Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 119:199–207

    Article  CAS  PubMed  Google Scholar 

  3. Hara Y, Balci-Hayta B, Yoshida-Moriguchi T et al (2011) A dystroglycan mutation associated with limb-girdle muscular dystrophy. N Engl J Med 364:939–946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hayashi YK, Ogawa M, Tagawa K et al (2001) Selective deficiency of alpha-dystroglycan in Fukuyama-type congenital muscular dystrophy. Neurology 57:115–121

    Article  CAS  PubMed  Google Scholar 

  5. Michele DE, Barresi R, Kanagawa M et al (2002) Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 418:417–422

    Article  CAS  PubMed  Google Scholar 

  6. Brockington M, Blake DJ, Prandini P et al (2001) Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Am J Hum Genet 69:1198–1209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Brockington M, Yuva Y, Prandini P et al (2001) Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum Mol Genet 10:2851–2859

    Article  CAS  PubMed  Google Scholar 

  8. Longman C, Brockington M, Torelli S et al (2003) Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan. Hum Mol Genet 12:2853–2861

    Article  CAS  PubMed  Google Scholar 

  9. Toda T, Kobayashi K, Takeda S et al (2003) Fukuyama-type congenital muscular dystrophy (FCMD) and alpha-dystroglycanopathy. Congenit Anom (Kyoto) 43:97–104

    Article  CAS  Google Scholar 

  10. Michele DE, Campbell KP (2003) Dystrophin-glycoprotein complex: post-translational processing and dystroglycan function. J Biol Chem 278:15457–15460

    Article  CAS  PubMed  Google Scholar 

  11. Fukuyama Y, Osawa M, Suzuki H (1981) Congenital progressive muscular dystrophy of the Fukuyama type – clinical, genetic and pathological considerations. Brain Dev 3:1–29

    Article  CAS  PubMed  Google Scholar 

  12. Toda T, Kobayashi K, Kondo-Iida E (2000) The Fukuyama congenital muscular dystrophy story. Neuromuscul Disord 10:153–159

    Article  CAS  PubMed  Google Scholar 

  13. Kano H, Kobayashi K, Herrmann R (2002) Deficiency of alpha-dystroglycan in muscle-eye-brain disease. Biochem Biophys Res Commun 291:1283–1286

    Article  CAS  PubMed  Google Scholar 

  14. Murakami T, Hayashi YK, Noguchi S et al (2006) Fukutin gene mutations cause dilated cardiomyopathy with minimal muscle weakness. Ann Neurol 60:597–602

    Article  CAS  PubMed  Google Scholar 

  15. D’Amico A, Tessa A, Bruno C et al (2006) Expanding the clinical spectrum of POMT1 phenotype. Neurology 66:1564–1567

    Article  PubMed  Google Scholar 

  16. Godfrey C, Clement E, Mein R et al (2007) Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 130:2725–2735

    Article  PubMed  Google Scholar 

  17. Godfrey C, Foley AR, Clement E et al (2011) Dystroglycanopathies: coming into focus. Curr Opin Genet Dev 21:278–285

    Article  CAS  PubMed  Google Scholar 

  18. Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ et al (1992) Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355:696–702

    Article  CAS  PubMed  Google Scholar 

  19. Kanagawa M, Saito F, Kunz S et al (2004) Molecular recognition by LARGE is essential for expression of functional dystroglycan. Cell 117:953–964

    Article  CAS  PubMed  Google Scholar 

  20. Hara Y, Kanagawa M, Kunz S et al (2011) Like-acetylglucosaminyltransferase (LARGE)-dependent modification of dystroglycan at Thr-317/319 is required for laminin binding and arenavirus infection. Proc Natl Acad Sci U S A 108:17426–17431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Chiba A, Matsumura K, Yamada H et al (1997) Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve alpha-dystroglycan. The role of a novel O-mannosyl-type oligosaccharide in the binding of alpha-dystroglycan with laminin. J Biol Chem 272:2156–2162

    Article  CAS  PubMed  Google Scholar 

  22. Inamori K, Endo T, Gu J et al (2004) N-Acetylglucosaminyltransferase IX acts on the GlcNAc beta 1,2-Man alpha 1-Ser/Thr moiety, forming a 2,6-branched structure in brain O-mannosyl glycan. J Biol Chem 279:2337–2340

    Article  CAS  PubMed  Google Scholar 

  23. Yoshida-Moriguchi T, Yu L, Stalnaker SH et al (2010) O-mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding. Science 327:88–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Inamori K, Yoshida-Moriguchi T, Hara Y et al (2012) Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 335:93–96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Goddeeris MM, Wu B, Venzke D et al (2013) LARGE glycans on dystroglycan function as a tunable matrix scaffold to prevent dystrophy. Nature 503:136–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Barresi R, Michele DE, Kanagawa M et al (2004) LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat Med 10:696–703

    Article  CAS  PubMed  Google Scholar 

  27. Beltrán-Valero de Bernabé D, Currier S, Steinbrecher A et al (2002) Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet 71:1033–1043

    Article  PubMed Central  PubMed  Google Scholar 

  28. van Reeuwijk J, Janssen M, van den Elzen C (2005) POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker-Warburg syndrome. J Med Genet 42:907–912

    Article  PubMed Central  PubMed  Google Scholar 

  29. Manya H, Chiba A, Yoshida A et al (2004) Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc Natl Acad Sci U S A 101:500–505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Yoshida A, Kobayashi K, Manya H et al (2001) Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell 1:717–724

    Article  CAS  PubMed  Google Scholar 

  31. Combs AC, Ervasti JM (2005) Enhanced laminin binding by alpha-dystroglycan after enzymatic deglycosylation. Biochem J 390:303–309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Kuga A, Kanagawa M, Sudo A et al (2012) Absence of post-phosphoryl modification in dystroglycanopathy mouse models and wild-type tissues expressing non-laminin binding form of α-dystroglycan. J Biol Chem 287:9560–9567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Manzini MC, Tambunan DE, Hill RS et al (2012) Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome. Am J Hum Genet 91:541–547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Stevens E, Carss KJ, Cirak S et al (2013) Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of α-dystroglycan. Am J Hum Genet 92:354–365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Jae LT, Raaben M, Riemersma M et al (2013) Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa virus entry. Science 340:479–483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Yoshida-Moriguchi T, Willer T, Anderson ME et al (2013) SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 341:896–899

    Article  CAS  PubMed  Google Scholar 

  37. Peyrard M, Seroussi E, Sandberg-Nordqvist AC et al (1999) The human LARGE gene from 22q12.3-q13.1 is a new, distinct member of the glycosyltransferase gene family. Proc Natl Acad Sci U S A 96:598–603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Grewal PK, Holzfeind PJ, Bittner RE et al (2001) Mutant glycosyltransferase and altered glycosylation of alpha-dystroglycan in the myodystrophy mouse. Nat Genet 28:151–154

    Article  CAS  PubMed  Google Scholar 

  39. Buysse K, Riemersma M, Powell G et al (2013) Missense mutations in β-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome. Hum Mol Genet 22:1746–1754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Bao X, Kobayashi M, Hatakeyama S et al (2009) Tumor suppressor function of laminin-binding alpha-dystroglycan requires a distinct beta3-N-acetylglucosaminyltransferase. Proc Natl Acad Sci U S A 106:12109–12114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Willer T, Inamori KI, Venzke D et al (2014) The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated α-dystroglycan functional glycosylation. Elife (in press). doi: 10.7554/eLife.03941

  42. Praissman JL, Live DH, Wang S et al (2014) B4GAT1 is the priming enzyme for the LARGE-dependent functional glycosylation of α-dystroglycan. Elife (in press). doi: 10.7554/eLife.03943

  43. Kobayashi K, Nakahori Y, Miyake M et al (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394:388–392

    Article  CAS  PubMed  Google Scholar 

  44. Tachikawa M, Kanagawa M, Yu CC et al (2012) Mislocalization of fukutin protein by disease-causing missense mutations can be rescued with treatments directed at folding amelioration. J Biol Chem 287:8398–8406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Aravind L, Koonin EV (1999) The fukutin protein family – predicted enzymes modifying cell-surface molecules. Curr Biol 9:R836–R837

    Article  CAS  PubMed  Google Scholar 

  46. Kuchta K, Knizewski L, Wyrwicz LS et al (2009) Comprehensive classification of nucleotidyltransferase fold proteins: identification of novel families and their representatives in human. Nucleic Acids Res 37:7701–7714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Vuillaumier-Barrot S, Bouchet-Séraphin C, Chelbi M et al (2012) Identification of mutations in TMEM5 and ISPD as a cause of severe cobblestone lissencephaly. Am J Hum Genet 91:1135–1143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Roscioli T, Kamsteeg EJ, Buysse K et al (2012) Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of α-dystroglycan. Nat Genet 44:581–585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Willer T, Lee H, Lommel M et al (2012) ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome. Nat Genet 44:575–580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Yang AC, Ng BG, Moore SA et al (2013) Congenital disorder of glycosylation due to DPM1 mutations presenting with dystroglycanopathy-type congenital muscular dystrophy. Mol Genet Metab 110:345–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Barone R, Aiello C, Race V et al (2012) DPM2-CDG: a muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy. Ann Neurol 72:550–558

    Article  CAS  PubMed  Google Scholar 

  52. Lefeber DJ, Schönberger J, Morava E et al (2009) Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathies. Am J Hum Genet 85:76–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Lefeber DJ, de Brouwer AP, Morava E et al (2011) Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet 7, e1002427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Carss KJ, Stevens E, Foley AR et al (2013) Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan. Am J Hum Genet 93:29–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Ervasti JM, Campbell KP (1993) A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122:809–823

    Article  CAS  PubMed  Google Scholar 

  56. Talts JF, Andac Z, Göhring W et al (1999) Binding of the G domains of laminin alpha1 and alpha2 chains and perlecan to heparin, sulfatides, alpha-dystroglycan and several extracellular matrix proteins. EMBO J 18:863–870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Ido H, Harada K, Futaki S et al (2004) Molecular dissection of the alpha-dystroglycan- and integrin-binding sites within the globular domain of human laminin-10. J Biol Chem 279:10946–10954

    Article  CAS  PubMed  Google Scholar 

  58. Yoon JH, Chandrasekharan K, Xu R et al (2009) The synaptic CT carbohydrate modulates binding and expression of extracellular matrix proteins in skeletal muscle: partial dependence on utrophin. Mol Cell Neurosci 41:448–463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Gee SH, Montanaro F, Lindenbaum MH et al (1994) Dystroglycan-alpha, a dystrophin-associated glycoprotein, is a functional agrin receptor. Cell 77:675–686

    Article  CAS  PubMed  Google Scholar 

  60. Bowe MA, Deyst KA, Leszyk JD et al (1994) Identification and purification of an agrin receptor from Torpedo postsynaptic membranes: a heteromeric complex related to the dystroglycans. Neuron 12:1173–1180

    Article  CAS  PubMed  Google Scholar 

  61. Peng HB, Ali AA, Daggett DF et al (1998) The relationship between perlecan and dystroglycan and its implication in the formation of the neuromuscular junction. Cell Adhes Commun 5:475–489

    Article  CAS  PubMed  Google Scholar 

  62. Sugita S, Saito F, Tang J et al (2001) A stoichiometric complex of neurexins and dystroglycan in brain. J Cell Biol 154:435–445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Sato S, Omori Y, Katoh K et al (2008) Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation. Nat Neurosci 11:923–931

    Article  CAS  PubMed  Google Scholar 

  64. Wright KM, Lyon KA, Leung H et al (2012) Dystroglycan organizes axon guidance cue localization and axonal pathfinding. Neuron 76:931–944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Yurchenco PD (2011) Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol 3:a004911

    Article  PubMed Central  PubMed  Google Scholar 

  66. Singhal N, Martin PT (2011) Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Dev Neurobiol 71:982–1005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Zaccaria ML, Di Tommaso F, Brancaccio A et al (2001) Dystroglycan distribution in adult mouse brain: a light and electron microscopy study. Neuroscience 104:311–324

    Article  CAS  PubMed  Google Scholar 

  68. Kanagawa M, Omori Y, Sato S et al (2010) Post-translational maturation of dystroglycan is necessary for pikachurin binding and ribbon synaptic localization. J Biol Chem 285:31208–31216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Willer T, Prados B, Falcón-Pérez JM et al (2004) Targeted disruption of the Walker-Warburg syndrome gene Pomt1 in mouse results in embryonic lethality. Proc Natl Acad Sci U S A 101:14126–14131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Kurahashi H, Taniguchi M, Meno C et al (2005) Basement membrane fragility underlies embryonic lethality in fukutin-null mice. Neurobiol Dis 19:208–217

    Article  CAS  PubMed  Google Scholar 

  71. Yagi H, Nakagawa N, Saito T et al (2013) AGO61-dependent GlcNAc modification primes the formation of functional glycans on α-dystroglycan. Sci Rep 3:3288

    Article  PubMed Central  PubMed  Google Scholar 

  72. Liu J, Ball SL, Yang Y et al (2006) A genetic model for muscle-eye-brain disease in mice lacking protein O-mannose 1,2-N-acetylglucosaminyltransferase (POMGnT1). Mech Dev 123:228–240

    Article  CAS  PubMed  Google Scholar 

  73. Miyagoe-Suzuki Y, Masubuchi N, Miyamoto K et al (2009) Reduced proliferative activity of primary POMGnT1-null myoblasts in vitro. Mech Dev 126:107–116

    Article  CAS  PubMed  Google Scholar 

  74. Takeda S, Kondo M, Sasaki J et al (2003) Fukutin is required for maintenance of muscle integrity, cortical histiogenesis and normal eye development. Hum Mol Genet 12:1449–1459

    Article  CAS  PubMed  Google Scholar 

  75. Kanagawa M, Nishimoto A, Chiyonobu T et al (2009) Residual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE in novel model mice to dystroglycanopathy. Hum Mol Genet 18:621–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Beedle AM, Turner AJ, Saito Y et al (2012) Mouse fukutin deletion impairs dystroglycan processing and recapitulates muscular dystrophy. J Clin Invest 122:3330–3342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Kanagawa M, Yu CC, Ito C et al (2013) Impaired viability of muscle precursor cells in muscular dystrophy with glycosylation defects and amelioration of its severe phenotype by limited gene expression. Hum Mol Genet 22:3003–3015

    Article  CAS  PubMed  Google Scholar 

  78. Chan YM, Keramaris-Vrantsis E, Lidov HG et al (2010) Fukutin-related protein is essential for mouse muscle, brain and eye development and mutation recapitulates the wide clinical spectrums of dystroglycanopathies. Hum Mol Genet 19:3995–4006

    Article  CAS  PubMed  Google Scholar 

  79. Ackroyd MR, Skordis L, Kaluarachchi M et al (2009) Reduced expression of fukutin related protein in mice results in a model for fukutin related protein associated muscular dystrophies. Brain 132:439–451

    Article  CAS  PubMed  Google Scholar 

  80. Hu H, Li J, Gagen CS et al (2011) Conditional knockout of protein O-mannosyltransferase 2 reveals tissue-specific roles of O-mannosyl glycosylation in brain development. J Comp Neurol 519:1320–1337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Holzfeind PJ, Grewal PK, Reitsamer HA et al (2002) Skeletal, cardiac and tongue muscle pathology, defective retinal transmission, and neuronal migration defects in the Large (myd) mouse defines a natural model for glycosylation-deficient muscle-eye-brain disorders. Hum Mol Genet 11:2673–2687

    Article  CAS  PubMed  Google Scholar 

  82. Han R, Kanagawa M, Yoshida-Moriguchi T et al (2009) Basal lamina strengthens cell membrane integrity via the laminin G domain-binding motif of alpha-dystroglycan. Proc Natl Acad Sci U S A 106:12573–12579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Taniguchi M, Kurahashi H, Noguchi S et al (2006) Aberrant neuromuscular junctions and delayed terminal muscle fiber maturation in alpha-dystroglycanopathies. Hum Mol Genet 15:1279–1289

    Article  CAS  PubMed  Google Scholar 

  84. Nakano I, Funahashi M, Takada K et al (1996) Are breaches in the glia limitans the primary cause of the micropolygyria in Fukuyama-type congenital muscular dystrophy (FCMD)? Pathological study of the cerebral cortex of an FCMD fetus. Acta Neuropathol 91:313–321

    Article  CAS  PubMed  Google Scholar 

  85. Moore SA, Saito F, Chen J et al (2002) Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature 418:422–425

    Article  CAS  PubMed  Google Scholar 

  86. Myshrall TD, Moore SA, Ostendorf AP et al (2012) Dystroglycan on radial glia end feet is required for pial basement membrane integrity and columnar organization of the developing cerebral cortex. J Neuropathol Exp Neurol 71:1047–1063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Satz JS, Ostendorf AP, Hou S et al (2010) Distinct functions of glial and neuronal dystroglycan in the developing and adult mouse brain. J Neurosci 30:14560–14572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Yu M, He Y, Wang K et al (2013) Adeno-associated viral-mediated LARGE gene therapy rescues the muscular dystrophic phenotype in mouse models of dystroglycanopathy. Hum Gene Ther 24:317–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Xu L, Lu PJ, Wang CH et al (2013) Adeno-associated virus 9 mediated FKRP gene therapy restores functional glycosylation of α-dystroglycan and improves muscle functions. Mol Ther 21:1832–1840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Vannoy CH, Xu L, Keramaris E et al (2014) Adeno-associated virus-mediated overexpression of LARGE rescues α-dystroglycan function in dystrophic mice with mutations in the fukutin-related protein. Hum Gene Ther Methods 25:187–196

    Google Scholar 

  91. Whitmore C, Fernandez-Fuente M, Booler H et al (2014) The transgenic expression of LARGE exacerbates the muscle phenotype of dystroglycanopathy mice. Hum Mol Genet 23:1842–1855

    Article  CAS  PubMed  Google Scholar 

  92. Saito F, Kanagawa M, Ikeda M et al (2014) Overexpression of LARGE suppresses muscle regeneration via down-regulation of insulin-like growth factor 1 and aggravates muscular dystrophy in mice. Hum Mol Genet 23:4543–4558

    Google Scholar 

  93. Taniguchi-Ikeda M, Kobayashi K, Kanagawa M et al (2011) Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy. Nature 478:127–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoi Kanagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kanagawa, M., Toda, T. (2016). α-Dystroglycanopathy. In: Takeda, S., Miyagoe-Suzuki, Y., Mori-Yoshimura, M. (eds) Translational Research in Muscular Dystrophy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55678-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55678-7_2

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55677-0

  • Online ISBN: 978-4-431-55678-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics