Skip to main content

High Myopia and Myopic Glaucoma: Anterior Segment Features

  • Chapter
Myopia and Glaucoma

Abstract

High myopia is generally associated with an enlargement of the globe. The mechanical stretch forces responsible for enlarging the eyes induce morphological changes in the sclera. Many pathological myopia studies have documented fundus findings that include tigroid fundus, lacquer cracks, atrophy of the retinal pigment epithelium and choroid, posterior staphyloma, choroidal neovascularization, and the myopic configuration of the optic nerve head. In general, it is thought that a few changes occur in the anterior segment of myopic eyes. In recent years, however, new imaging technologies that are able to analyze the anterior segment of the eye have been introduced. This chapter summarizes changes that do occur in the anterior segment in high myopic eyes and discusses possible influential factors on the assessment and management of glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiesel TN, Raviola E (1977) Myopia and eye enlargement after neonatal lid fusion in monkeys. Nature 266(5597):66–68

    Article  CAS  PubMed  Google Scholar 

  2. Atchison DA, Jones CE, Schmid KL, Pritchard N, Pope JM, Strugnell WE, Riley RA (2004) Eye shape in emmetropia and myopia. Invest Ophthalmol Vis Sci 45(10):3380–3386. doi:10.1167/iovs.04-0292

    Article  PubMed  Google Scholar 

  3. Moriyama M, Ohno-Matsui K, Modegi T, Kondo J, Takahashi Y, Tomita M, Tokoro T, Morita I (2012) Quantitative analyses of high-resolution 3D MR images of highly myopic eyes to determine their shapes. Invest Ophthalmol Vis Sci 53(8):4510–4518. doi:10.1167/iovs.12-9426

    Article  PubMed  Google Scholar 

  4. Doughty MJ, Zaman ML (2000) Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. Surv Ophthalmol 44(5):367–408

    Article  CAS  PubMed  Google Scholar 

  5. Stodtmeister R (1998) Applanation tonometry and correction according to corneal thickness. Acta Ophthalmol Scand 76(3):319–324

    Article  CAS  PubMed  Google Scholar 

  6. Singh RP, Goldberg I, Graham SL, Sharma A, Mohsin M (2001) Central corneal thickness, tonometry, and ocular dimensions in glaucoma and ocular hypertension. J Glaucoma 10(3):206–210

    Article  CAS  PubMed  Google Scholar 

  7. Bhan A, Browning AC, Shah S, Hamilton R, Dave D, Dua HS (2002) Effect of corneal thickness on intraocular pressure measurements with the pneumotonometer, Goldmann applanation tonometer, and Tono-Pen. Invest Ophthalmol Vis Sci 43(5):1389–1392

    PubMed  Google Scholar 

  8. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Kass MA (2002) The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120(6):714–720; discussion 829–730

    Article  PubMed  Google Scholar 

  9. Herndon LW, Weizer JS, Stinnett SS (2004) Central corneal thickness as a risk factor for advanced glaucoma damage. Arch Ophthalmol 122(1):17–21. doi:10.1001/archopht.122.1.17

    Article  PubMed  Google Scholar 

  10. Al-Mezaine HS, Al-Obeidan S, Kangave D, Sadaawy A, Wehaib TA, Al-Amro SA (2009) The relationship between central corneal thickness and degree of myopia among Saudi adults. Int Ophthalmol 29(5):373–378. doi:10.1007/s10792-008-9249-8

    Article  PubMed  Google Scholar 

  11. Fam HB, How AC, Baskaran M, Lim KL, Chan YH, Aung T (2006) Central corneal thickness and its relationship to myopia in Chinese adults. Br J Ophthalmol 90(12):1451–1453. doi:10.1136/bjo.2006.101170

    Article  PubMed Central  PubMed  Google Scholar 

  12. Suzuki S, Suzuki Y, Iwase A, Araie M (2005) Corneal thickness in an ophthalmologically normal Japanese population. Ophthalmology 112(8):1327–1336. doi:10.1016/j.ophtha.2005.03.022

    Article  PubMed  Google Scholar 

  13. Luce DA (2005) Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 31(1):156–162. doi:10.1016/j.jcrs.2004.10.044

    Article  PubMed  Google Scholar 

  14. Congdon NG, Broman AT, Bandeen-Roche K, Grover D, Quigley HA (2006) Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol 141(5):868–875. doi:10.1016/j.ajo.2005.12.007

    Article  PubMed  Google Scholar 

  15. Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I (2007) Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci 48(7):3026–3031. doi:10.1167/iovs.04-0694

    Article  PubMed  Google Scholar 

  16. Shen M, Fan F, Xue A, Wang J, Zhou X, Lu F (2008) Biomechanical properties of the cornea in high myopia. Vision Res 48(21):2167–2171. doi:10.1016/j.visres.2008.06.020

    Article  PubMed  Google Scholar 

  17. Jiang Z, Shen M, Mao G, Chen D, Wang J, Qu J, Lu F (2011) Association between corneal biomechanical properties and myopia in Chinese subjects. Eye (Lond) 25(8):1083–1089. doi:10.1038/eye.2011.104

    Article  CAS  Google Scholar 

  18. Rabsilber TM, Becker KA, Frisch IB, Auffarth GU (2003) Anterior chamber depth in relation to refractive status measured with the Orbscan II Topography System. J Cataract Refract Surg 29(11):2115–2121

    Article  PubMed  Google Scholar 

  19. Park SH, Park KH, Kim JM, Choi CY (2010) Relation between axial length and ocular parameters. Ophthalmologica 224(3):188–193. doi:10.1159/000252982

    Article  PubMed  Google Scholar 

  20. Nongpiur ME, Sakata LM, Friedman DS, He M, Chan YH, Lavanya R, Wong TY, Aung T (2010) Novel association of smaller anterior chamber width with angle closure in Singaporeans. Ophthalmology 117(10):1967–1973. doi:10.1016/j.ophtha.2010.02.007

    Article  PubMed  Google Scholar 

  21. Tan GS, He M, Zhao W, Sakata LM, Li J, Nongpiur ME, Lavanya R, Friedman DS, Aung T (2012) Determinants of lens vault and association with narrow angles in patients from Singapore. Am J Ophthalmol 154(1):39–46. doi:10.1016/j.ajo.2012.01.015

    Article  PubMed  Google Scholar 

  22. Chakravarti T, Spaeth GL (2007) The prevalence of myopia in eyes with angle closure. J Glaucoma 16(7):642–643. doi:10.1097/IJG.0b013e318064c803

    Article  PubMed  Google Scholar 

  23. Barkana Y, Shihadeh W, Oliveira C, Tello C, Liebmann JM, Ritch R (2006) Angle closure in highly myopic eyes. Ophthalmology 113(2):247–254. doi:10.1016/j.ophtha.2005.10.006

    Article  PubMed  Google Scholar 

  24. Honmura S (1968) Studies on the relationship between ocular tension and myopia. II. Ocular tension, ocular rigidity, aqueous outflow and aqueous secretion in myopic eyes. Nihon Ganka Gakkai Zasshi 72(6):688–696

    CAS  PubMed  Google Scholar 

  25. Muto K, Toyofuku H, Koshiyama H, Futa R (1968) Values of tonography in cases with refractive error. Nihon Ganka Kiyo 19(8):887–890

    CAS  PubMed  Google Scholar 

  26. Weinreb RN, Toris CB, Gabelt BT, Lindsey JD, Kaufman PL (2002) Effects of prostaglandins on the aqueous humor outflow pathways. Surv Ophthalmol 47(Suppl 1):S53–S64

    Article  PubMed  Google Scholar 

  27. Buckhurst H, Gilmartin B, Cubbidge RP, Nagra M, Logan NS (2013) Ocular biometric correlates of ciliary muscle thickness in human myopia. Ophthalmic Physiol Opt 33(3):294–304. doi:10.1111/opo.12039

    Article  PubMed  Google Scholar 

  28. Lewis HA, Kao CY, Sinnott LT, Bailey MD (2012) Changes in ciliary muscle thickness during accommodation in children. Optom Vis Sci 89(5):727–737. doi:10.1097/OPX.0b013e318253de7e

    Article  PubMed Central  PubMed  Google Scholar 

  29. Muftuoglu O, Hosal BM, Zilelioglu G (2009) Ciliary body thickness in unilateral high axial myopia. Eye (Lond) 23(5):1176–1181. doi:10.1038/eye.2008.178

    Article  CAS  Google Scholar 

  30. Oliveira C, Tello C, Liebmann JM, Ritch R (2005) Ciliary body thickness increases with increasing axial myopia. Am J Ophthalmol 140(2):324–325. doi:10.1016/j.ajo.2005.01.047

    Article  PubMed  Google Scholar 

  31. Campbell DG (1979) Pigmentary dispersion and glaucoma. A new theory. Arch Ophthalmol 97(9):1667–1672

    Article  CAS  PubMed  Google Scholar 

  32. Sokol J, Stegman Z, Liebmann JM, Ritch R (1996) Location of the iris insertion in pigment dispersion syndrome. Ophthalmology 103(2):289–293

    Article  CAS  PubMed  Google Scholar 

  33. Farrar SM, Shields MB, Miller KN, Stoup CM (1989) Risk factors for the development and severity of glaucoma in the pigment dispersion syndrome. Am J Ophthalmol 108(3):223–229

    Article  CAS  PubMed  Google Scholar 

  34. Irshad FA, Mayfield MS, Zurakowski D, Ayyala RS (2010) Variation in Schlemm’s canal diameter and location by ultrasound biomicroscopy. Ophthalmology 117(5):916–920. doi:10.1016/j.ophtha.2009.09.041

    Article  PubMed  Google Scholar 

  35. Usui T, Tomidokoro A, Mishima K, Mataki N, Mayama C, Honda N, Amano S, Araie M (2011) Identification of Schlemm’s canal and its surrounding tissues by anterior segment fourier domain optical coherence tomography. Invest Ophthalmol Vis Sci 52(9):6934–6939. doi:10.1167/iovs.10-7009

    Article  PubMed  Google Scholar 

  36. Kagemann L, Wollstein G, Ishikawa H, Bilonick RA, Brennen PM, Folio LS, Gabriele ML, Schuman JS (2010) Identification and assessment of Schlemm’s canal by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 51(8):4054–4059. doi:10.1167/iovs.09-4559

    Article  PubMed Central  PubMed  Google Scholar 

  37. Kagemann L, Wollstein G, Ishikawa H, Nadler Z, Sigal IA, Folio LS, Schuman JS (2012) Visualization of the conventional outflow pathway in the living human eye. Ophthalmology 119(8):1563–1568. doi:10.1016/j.ophtha.2012.02.032

    Article  PubMed Central  PubMed  Google Scholar 

  38. Hong J, Xu J, Wei A, Wen W, Chen J, Yu X, Sun X (2013) Spectral-domain optical coherence tomographic assessment of Schlemm’s canal in Chinese subjects with primary open-angle glaucoma. Ophthalmology 120(4):709–715. doi:10.1016/j.ophtha.2012.10.008

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanori Kameda M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kameda, T., Kurimoto, Y. (2015). High Myopia and Myopic Glaucoma: Anterior Segment Features. In: Sugiyama, K., Yoshimura, N. (eds) Myopia and Glaucoma. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55672-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55672-5_7

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55671-8

  • Online ISBN: 978-4-431-55672-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics