Skip to main content

Prostaglandin Terminal Synthases as Novel Drug Targets

  • Chapter
Bioactive Lipid Mediators

Abstract

Prostanoids are lipid metabolites of ω3 and ω6 20-carbon essential fatty acids such as arachidonic acid and have a broad range of biological activities. Three kinds of enzymes—phospholipase A2 (PLA2), cyclooxygenase (COX), and prostaglandin (PG) terminal synthase—are involved in the biosynthesis of prostanoids. Arachidonic acid released from membrane glycerophospholipids by PLA2 enzymes is then supplied to either of the two COX isozymes, COX-1 and COX-2. The COX metabolite PGH2 is then converted to each prostanoid by specific PG terminal synthases. Nonsteroidal antiinflammatory drugs (NSAIDs) exert their antiinflammatory and antitumor effects by inhibiting COX and thereby reducing prostanoid production. However, gastrointestinal, renal, and the recently reported cardiovascular side effects associated with the pharmacological inhibition of the COX enzymes have led to renewed attention to other potential targets for NSAIDs. As new methods appear for the selective modulation of prostanoid production, PG terminal synthases have gained attention as a novel target for NSAIDs. To date, multiple PG terminal synthases have been identified, and mice with specific deletions in each of these PG terminal synthases have been engineered. In this review, we summarize the current understanding of the in vivo roles of PG terminal synthases by knockout mouse studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182

    Article  CAS  PubMed  Google Scholar 

  2. Kudo I, Murakami M (2002) Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat 69:3–58

    Article  Google Scholar 

  3. Smith WL, Urade Y, Jakobsson PJ (2011) Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev 111:5821–5865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hara S, Kudo I (2006) COX-2 inhibitors and the risk of cardiovascular events. Jpn Med Assoc J 49:276–278

    Google Scholar 

  5. Hara S, Kamei D, Sasaki Y et al (2010) Prostaglandin E synthases: understanding their pathophysiological roles through mouse genetic models. Biochimie 92:651–659

    Article  CAS  PubMed  Google Scholar 

  6. Jakobsson PJ, Thorén S, Morgenstern R et al (1999) Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci U S A 96:7220–7225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Murakami M, Naraba H, Tanioka T et al (2000) Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J Biol Chem 275:32783–32792

    Article  CAS  PubMed  Google Scholar 

  8. Samuelsson B, Mogenstern R, Jakobsson PJ (2007) Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol Rev 59:207–224

    Article  CAS  PubMed  Google Scholar 

  9. Uematsu S, Matsumoto M, Takeda K et al (2002) Lipopolysaccharide-dependent prostaglandin E2 production is regulated by the glutathione-dependent prostaglandin E2 synthase gene induced by the Toll-like receptor 4/MyD88/NF-IL6 pathway. J Immunol 168:5811–5816

    Article  CAS  PubMed  Google Scholar 

  10. Trebino CE, Stock JL, Gibbons CP et al (2003) Impaired inflammatory and pain responses in mice lacking an inducible prostaglandin E synthase. Proc Natl Acad Sci U S A 100:9044–9049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kamei D, Yamakawa K, Takegoshi Y et al (2004) Reduced pain hypersensitivity and inflammation in mice lacking microsomal prostaglandin E synthase-1. J Biol Chem 279:33684–33695

    Article  CAS  PubMed  Google Scholar 

  12. Inada M, Matsumoto C, Uematsu S et al (2006) Membrane-bound prostaglandin E synthase-1-mediated prostaglandin E2 production by osteoblast plays a critical role in lipopolysaccharide-induced bone loss associated with inflammation. J Immunol 177:1879–1885

    Article  CAS  PubMed  Google Scholar 

  13. Kojima F, Kapoor M, Yang L et al (2008) Defective generation of a humoral immune response is associated with a reduced incidence and severity of collagen-induced arthritis in microsomal prostaglandin E synthase-1 null mice. J Immunol 180:8361–8368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Engblom D, Saha S, Engström L et al (2003) Microsomal prostaglandin E synthase-1 is the central switch during immune-induced pyresis. Nat Neurosci 6:1137–1138

    Article  CAS  PubMed  Google Scholar 

  15. Saha S, Engström L, Mackerlova L et al (2005) Impaired febrile responses to immune challenge in mice deficient in microsomal prostaglandin E synthase-1. Am J Physiol 288:R1100–R1107

    CAS  Google Scholar 

  16. Xu D, Rowland SE, Clark P et al (2008) MF63 [2-(6-chloro-1H-phenanthro[9,10-d]imidazole-2-yl)-isophthalonitrile], a selective microsomal prostaglandin E synthase-1 inhibitor, relieves ryresis and pain in preclinical models of inflammation. J Pharmacol Exp Ther 326:754–763

    Article  CAS  PubMed  Google Scholar 

  17. Leclerc P, Paweizik SC, Idborg H et al (2013) Characterization of a new mPGES-1 inhibitor in rat models of inflammation. Prostaglandins Other Lipid Mediat 102-103:1–12

    Article  CAS  PubMed  Google Scholar 

  18. Ikeda-Matsuo Y, Ota A, Fukada T et al (2006) Microsomal prostaglandin E synthase-1 is a critical factor of stroke-reperfusion injury. Proc Natl Acad Sci U S A 103:11790–11795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kihara Y, Matsushita T, Kita Y et al (2009) Targeted lipidomics revealed mPGES-1-PGE2 as a therapeutic target for multiple sclerosis. Proc Natl Acad Sci U S A 106:21807–21812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Akitake Y, Nakatani Y, Kamei D et al (2013) Microsomal prostaglandin E synthase-1 is induced in Alzheimer’s disease and its deletion mitigates Alzheimer’s disease-like pathology in a mouse model. J Neurosci Res 91:909–919

    Article  CAS  PubMed  Google Scholar 

  21. Wang M, Zukas AM, Hui Y et al (2006) Deletion of microsomal prostaglandin E synthase-1 augments prostacyclin and retards atherogenesis. Proc Natl Acad Sci U S A 103:14507–14512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Wang M, Lee E, Song W et al (2008) Microsomal prostaglandin E synthase-1 deletion suppresses oxidative stress and angiotensin II-induced abdominal aortic aneurysm formation. Circulation 117:1302–1309

    Article  CAS  PubMed  Google Scholar 

  23. Wang M, Ihida-Stansbury K, Kothapalli D et al (2011) Microsomal prostaglandin E2 synthase-1 modulates the response to vascular injury. Circulation 123:631–639

    Article  CAS  PubMed  Google Scholar 

  24. Kamei D, Murakami M, Nakatani Y et al (2003) Potential role of microsomal prostaglandin E synthase-1 in tumorigenesis. J Biol Chem 278:19396–19405

    Article  CAS  PubMed  Google Scholar 

  25. Oshima H, Oshima M, Inaba K et al (2004) Hyperplastic gastric tumors induced by activated macrophages in COX-2/mPGES-1 transgenic mice. EMBO J 23:1669–1678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kamei D, Murakami M, Sasaki Y et al (2010) Microsomal prostaglandin E synthase-1 in both cancer cells and hosts contributes to tumor growth, invasion and metastasis. Biochem J 425:361–371

    Article  PubMed Central  CAS  Google Scholar 

  27. Nakanishi M, Montrose DC, Clark P et al (2008) Genetic deletion of mPGES-1 suppresses intestinal tumorigenesis. Cancer Res 68:3251–3259

    Article  CAS  PubMed  Google Scholar 

  28. Nakanishi M, Menoret A, Tanaka T et al (2011) Selective PGE2 suppression impairs colon carcinogenesis and modifies local mucosal immunity. Cancer Prev Res 4:1198–1208

    Article  CAS  Google Scholar 

  29. Sasaki Y, Kamei D, Ishikawa Y et al (2012) Microsomal prostaglandin E synthase-1 is involved in multiple steps of colon carcinogenesis. Oncogene 31:2943–2952

    Article  CAS  PubMed  Google Scholar 

  30. Ae T, Ohno T, Hattori Y et al (2010) Role of microsomal prostaglandin E synthase-1 in the facilitation of angiogenesis and the healing of gastric ulcers. Am J Physiol 299:G1139–G1146

    CAS  Google Scholar 

  31. Tanikawa N, Ohmiya Y, Ohkubo H et al (2002) Identification and characterization of a novel type of membrane-associated prostaglandin E synthase. Biochem Biophys Res Commun 291:884–889

    Article  CAS  PubMed  Google Scholar 

  32. Murakami M, Nakashima K, Kamei D et al (2003) Cellular prostaglandin E2 production by membrane-bound prostaglandin E synthase-2 via both cyclooxygenases-1 and -2. J Biol Chem 278:37937–37947

    Article  CAS  PubMed  Google Scholar 

  33. Jania LA, Chandrasekharan S, Backlund MG et al (2009) Microsomal prostaglandin E synthase-2 is not essential for in vivo prostaglandin E2 biosynthesis. Prostaglandins Other Lipid Mediat 88:73–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Tanioka T, Nakatani Y, Semmyo N et al (2000) Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. J Biol Chem 275:32775–32782

    Article  CAS  PubMed  Google Scholar 

  35. Kobayashi T, Nakatani Y, Tanioka T et al (2004) Regulation of cytosolic prostaglandin E synthase by phosphorylation. Biochem J 381:59–69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Grad I, McKee TA, Ludwig SM et al (2006) The Hsp90 cochaperone p23 is essential for perinatal survival. Mol Cell Biol 26:8976–8983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Lovgren AK, Kovarova M, Koller BH (2007) cPGES/p23 is required for glucocorticoid receptor function and embryonic growth but not prostaglandin E2 synthesis. Mol Cell Biol 27:4416–4430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Nakatani Y, Hokonohara Y, Kakuta S et al (2007) Knockout mice lacking cPGES/p23, a constitutively expressed PGE2 synthetic enzyme, are perinatally lethal. Biochem Biophys Res Commun 362:387–392

    Article  CAS  PubMed  Google Scholar 

  39. Nakatani Y, Hokonohara Y, Tajima Y et al (2011) Involvement of the constitutive prostaglandin E synthase cPGES/p23 in expression of an initial prostaglandin E2 inactivating enzyme, 15-PGDH. Prostaglandins Other Lipid Mediat 94:112–117

    Article  CAS  PubMed  Google Scholar 

  40. Christ-Hazelhof E, Nugteren DH (1979) Purification and characterisation of prostaglandin endoperoxide d-isomerase, a cytoplasmic, glutathione-requiring enzyme. Biochim Biophys Acta 572:43–51

    Article  CAS  PubMed  Google Scholar 

  41. Kanaoka Y, Ago H, Inagaki E et al (2000) Cloning and crystal structure of hematopoietic prostaglandin D synthase. Cell 90:1085–1095

    Article  Google Scholar 

  42. Mohri I, Taniike M, Taniguchi H et al (2006) Prostaglandin D2-mediated microglia/astrocyte interaction enhances astrogliosis and demyelination in twitcher. J Neurosci 26:4383–4393

    Article  CAS  PubMed  Google Scholar 

  43. Mohri I, Aritake K, Taniguchi H et al (2009) Inhibition of prostaglandin D synthase suppresses muscular necrosis. Am J Pathol 174:1735–1744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Rajakariar R, Hilliard M, Lawrence T et al (2007) Hematopoietic prostaglandin D2 synthase controls the onset and resolution of acute inflammation through PGD2 and 15-deoxyΔ12-14 PGJ2. Proc Natl Acad Sci U S A 104:20979–20984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Trivedi SG, Newson J, Rajakariar R et al (2006) Essential role for hematopoietic prostaglandin D2 synthase in the control of delayed type hypersensitivity. Proc Natl Acad Sci U S A 103:5179–5184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Park JM, Kanaoka Y, Eguchi N et al (2007) Hematopoietic prostaglandin D synthase suppresses intestinal adenomas in Apc Min/+ mice. Cancer Res 67:881–889

    Article  CAS  PubMed  Google Scholar 

  47. Murata T, Aritake K, Matsumoto S et al (2011) Prostagladin D2 is a mast cell-derived antiangiogenic factor in lung carcinoma. Proc Natl Acad Sci U S A 108:19802–19807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Urade Y, Fujimoto N, Hayaishi O (1985) Purification and characterization of rat brain prostaglandin D synthetase. J Biol Chem 260:12410–12415

    CAS  PubMed  Google Scholar 

  49. Urade Y, Nagata A, Suzuki Y et al (1989) Primary structure of rat brain prostaglandin D synthetase deduced from cDNA sequence. J Biol Chem 264:1041–1045

    CAS  PubMed  Google Scholar 

  50. Pinzar E, Kanaoka Y, Inui T et al (2000) Prostaglandin D synthase gene is involved in the regulation of non-rapid eye movement sleep. Proc Natl Acad Sci U S A 97:4903–4907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Eguchi N, Minami T, Shirafuji N et al (1999) Lack of tactile pain (allodynia) in lipocalin-type prostaglandin D synthase-deficient mice. Proc Natl Acad Sci U S A 96:726–730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Miwa Y, Takiuchi S, Kamide K et al (2004) Identification of gene polymorphism in lipocalin-type prostaglandin D synthase and its association with carotid atherosclerosis in Japanese hypertensive patients. Biochem Biophys Res Commun 322:428–433

    Article  CAS  PubMed  Google Scholar 

  53. Ragolia L, Palaia T, Hall CE et al (2005) Accelerated glucose intolerance, nephropathy, and atherosclerosis in prostaglandin D2 synthase knock-out mice. J Biol Chem 280:29946–29955

    Article  CAS  PubMed  Google Scholar 

  54. Joo M, Kwon M, Sadikot RT et al (2007) Induction and function of lipocalin prostaglandin D synthase in host immunity. J Immunol 179:2565–2575

    Article  CAS  PubMed  Google Scholar 

  55. Hokari R, Kurihara C, Nagata N et al (2011) Increased expression of lipocalin-type-prostaglandin D synthase in ulcerative colitis and exacerbating role in murine colitis. Am J Physiol 300:G401–G408

    CAS  Google Scholar 

  56. Taketomi Y, Ueno N, Kojima T et al (2013) Mast cell maturation is driven via a group III phospholipase A2-prostaglandin D2-DP1 receptor paracrine axis. Nat Immunol 14:554–563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Watanabe K (2011) Recent reports about enzymes related to the synthesis of prostaglandin (PG) F2 (PGF and 9α, 11β-PGF2). J Biochem 150:593–596

    Article  CAS  PubMed  Google Scholar 

  58. Ullrich V, Castle L, Weber P (1981) Spectral evidence for the cytochrome P450 nature of prostacyclin synthetase. Biochem Pharmacol 30:2033–2036

    Article  CAS  PubMed  Google Scholar 

  59. Hara S, Miyata A, Yokoyama C et al (1994) Isolation and molecular cloning of prostacyclin synthase from bovine endothelial cells. J Biol Chem 269:19897–19903

    CAS  PubMed  Google Scholar 

  60. Ueno N, Murakami M, Tanioka T et al (2001) Coupling between cyclooxygenase, terminal prostanoid synthase, and phospholipase A2. J Biol Chem 276:34918–34927

    Article  CAS  PubMed  Google Scholar 

  61. Todaka T, Yokoyama C, Yanamoto H et al (1999) Gene transfer of human prostacyclin synthase prevents neointimal formation after carotid balloon injury in rats. Stroke 30:419–426

    Article  CAS  PubMed  Google Scholar 

  62. Iwai N, Katsuya T, Ishikawa K et al (1999) Human prostacyclin synthase gene and hypertension: the Suita Study. Circulation 100:2231–2236

    Article  CAS  PubMed  Google Scholar 

  63. Yokoyama C, Yabuki T, Shimonishi M et al (2002) Prostacyclin-deficient mice develop ischemic renal disorders, including nephrosclerosis and renal infarction. Circulation 106:2397–23403

    Article  CAS  PubMed  Google Scholar 

  64. Keith RL, Miller YE, Hudish TM et al (2004) Pulmonary prostacyclin synthase overexpression chemoprevents tobacco smoke lung carcinogenesis in mice. Cancer Res 64:5897–5904

    Article  CAS  PubMed  Google Scholar 

  65. Nüsing R, Schneider-Voss S, Ullrich V (1990) Immunoaffinity purification of human thromboxane synthase. Arch Biochem Biophys 280:325–330

    Article  PubMed  Google Scholar 

  66. Yokoyama C, Miyata A, Ihara H et al (1991) Molecular cloning of human platelet thromboxane A synthase. Biochem Biophys Res Commun 178:1479–1484

    Article  CAS  PubMed  Google Scholar 

  67. Yu IS, Lin SR, Huang CC et al (2004) TXAS-deleted mice exhibit normal thrombopoiesis, defective hemostasis, and resistance to arachidonate-induced death. Blood 104:135–142

    Article  CAS  PubMed  Google Scholar 

  68. Dogné JM, de Leval X, Benoit P et al (2002) Therapeutic potential of thromboxane inhibitors in asthma. Expert Opin Invest Drugs 11:275–281

    Article  Google Scholar 

  69. Okuno T, Iizuka Y, Okazaki H et al (2008) 12(S)-Hydroxyheptadeca-5Z, 8E, 10E-trienoic acid is a natural ligand for leukotriene B4 receptor 2. J Exp Med 205:759–766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Liu M, Saeki K, Matsunobu T et al (2014) 12-Hydroxyheptadecatrienoic acid promotes epidermal wound healing by accelerating keratinocyte migration via the BLT2 receptor. J Exp Med 211:1063–1078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuntaro Hara Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Hara, S. (2015). Prostaglandin Terminal Synthases as Novel Drug Targets. In: Yokomizo, T., Murakami, M. (eds) Bioactive Lipid Mediators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55669-5_3

Download citation

Publish with us

Policies and ethics