Skip to main content

Neuromyelitis Optica: Diagnosis and Treatment

  • Chapter
  • First Online:
Neuroimmunological Diseases

Abstract

Neuromyelitis optica (NMO) is an inflammatory disorder of the central nervous system (CNS) characterized by optic neuritis and transverse myelitis. NMO is also known as Devic’s disease, after a case report by French neurologist Eugène Devic and his colleagues in the late nineteenth century. NMO has been considered a variant of multiple sclerosis (MS) and called opticospinal MS in Japan, where its prevalence is much higher than in Western countries. In 2004 however, an autoantibody, NMO-IgG (anti-aquaporin 4 antibody), was detected in the serum of patients with NMO, but not in patients with MS, indicating that NMO is independent of MS.

Recent studies of NMO have contributed to a growing understanding of the disease that includes NMO spectrum disorders (NMOSD). In this chapter, we describe the clinical and laboratory characteristics of NMO/NMOSD and their treatments. While corticosteroids and/or plasmapheresis are treatments for NMO/NMOSD, novel therapeutic approaches are being developed through research elucidating the pathomechanisms of NMO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet. 2004;364:2106–12.

    Article  CAS  PubMed  Google Scholar 

  2. Lennon VA, Kryzer TJ, Pittock SJ, et al. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med. 2005;202:473–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Khanna S, Sharma A, Huecker J, et al. Magnetic resonance imaging of optic neuritis in patients with neuromyelitis optica versus multiple sclerosis. J Neuroophthalmol. 2012;32:216–20.

    Article  PubMed  Google Scholar 

  4. Wingerchuk DM, Weinshenker BG. The natural history of multiple sclerosis: implications for trial design. Curr Opin Neurol. 1999;12:345–9.

    Article  CAS  PubMed  Google Scholar 

  5. Kitley J, Leite MI, Nakashima I, et al. Prognostic factors and disease course in aquaporin-4 antibody-positive patients with neuromyelitis optica spectrum disorder from the United Kingdom and Japan. Brain. 2012;135:1834–49.

    Article  PubMed  Google Scholar 

  6. Tackley G, Kuker W, Palace J. Magnetic resonance imaging in neuromyelitis optica Mult Scler. 2014; 20(9):1153–64.

    Google Scholar 

  7. Kiyat-Atamer A, Ekizoglu E, Tuzun E, et al. Long-term MRI findings in neuromyelitis optica: seropositive versus seronegative patients. Eur J Neurol. 2013;20:781–7.

    Article  CAS  PubMed  Google Scholar 

  8. Asgari N, Skejoe HP, Lillevang ST, et al. Modifications of longitudinally extensive transverse myelitis and brainstem lesions in the course of neuromyelitis optica (NMO): a population-based, descriptive study. BMC Neurol. 2013;13:33.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lim BC, Hwang H, Kim KJ, et al. Relapsing demyelinating CNS disease in a Korean pediatric population: multiple sclerosis versus neuromyelitis optica. Mult Scler. 2011;17:67–73.

    Article  PubMed  Google Scholar 

  10. Matthews L, Marasco R, Jenkinson M, et al. Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution. Neurology. 2013;80:1330–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pittock SJ, Weinshenker BG, Lucchinetti CF, et al. Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Arch Neurol. 2006;63:964–8.

    Article  PubMed  Google Scholar 

  12. Paty DW, Oger JJ, Kastrukoff LF, et al. MRI in the diagnosis of MS: a prospective study with comparison of clinical evaluation, evoked potentials, oligoclonal banding, and CT. Neurology. 1988;38:180–5.

    Article  CAS  PubMed  Google Scholar 

  13. Matsushita T, Isobe N, Matsuoka T, et al. Extensive vasogenic edema of anti-aquaporin-4 antibody-related brain lesions. Mult Scler. 2009;15:1113–7.

    Article  CAS  PubMed  Google Scholar 

  14. Ito S, Mori M, Makino T, et al. “Cloud-like enhancement” is a magnetic resonance imaging abnormality specific to neuromyelitis optica. Ann Neurol. 2009;66:425–8.

    Article  PubMed  Google Scholar 

  15. Saji E, Arakawa M, Yanagawa K, et al. Cognitive impairment and cortical degeneration in neuromyelitis optica. Ann Neurol. 2013;73:65–76.

    Article  PubMed  Google Scholar 

  16. Wingerchuk DM. Neuromyelitis optica: effect of gender. J Neurol Sci. 2009;286:18–23.

    Article  CAS  PubMed  Google Scholar 

  17. Wingerchuk DM, Lennon VA, Lucchinetti CF, et al. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6:805–15.

    Article  CAS  PubMed  Google Scholar 

  18. Freitas E, Guimaraes J. Neuromyelitis optica spectrum disorders associated with other autoimmune diseases. Rheumatol Int. 2015;35(2):243–53

    Google Scholar 

  19. Jarius S, Paul F, Franciotta D, et al. Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J Neurol Sci. 2011;306:82–90.

    Article  CAS  PubMed  Google Scholar 

  20. Ishizu T, Osoegawa M, Mei FJ, et al. Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain. 2005;128:988–1002.

    Article  PubMed  Google Scholar 

  21. Uzawa A, Mori M, Arai K, et al. Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6. Mult Scler. 2010;16:1443–52.

    Article  CAS  PubMed  Google Scholar 

  22. Jarius S, Probst C, Borowski K, et al. Standardized method for the detection of antibodies to aquaporin-4 based on a highly sensitive immunofluorescence assay employing recombinant target antigen. J Neurol Sci. 2010;291:52–6.

    Article  CAS  PubMed  Google Scholar 

  23. Kim W, Lee JE, Li XF, et al. Quantitative measurement of anti-aquaporin-4 antibodies by enzyme-linked immunosorbent assay using purified recombinant human aquaporin-4. Mult Scler. 2012;18:578–86.

    Article  CAS  PubMed  Google Scholar 

  24. Nagaishi A, Takagi M, Umemura A, et al. Clinical features of neuromyelitis optica in a large Japanese cohort: comparison between phenotypes. J Neurol Neurosurg Psychiatry. 2011;82:1360–4.

    Article  PubMed  Google Scholar 

  25. Takahashi T, Fujihara K, Nakashima I, et al. Establishment of a new sensitive assay for anti-human aquaporin-4 antibody in neuromyelitis optica. Tohoku J Exp Med. 2006;210:307–13.

    Article  CAS  PubMed  Google Scholar 

  26. Waters PJ, McKeon A, Leite MI, et al. Serologic diagnosis of NMO: a multicenter comparison of aquaporin-4-IgG assays. Neurology. 2012;78:665–71; discussion 669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Siritho S, Apiwattanakul M, Nakashima I, et al. Features of anti-aquaporin 4 antibody-seronegative Thai patients with neuromyelitis optica spectrum disorders: a comparison with seropositive cases. J Neurol Sci. 2014;341:17–21.

    Article  CAS  PubMed  Google Scholar 

  28. Takahashi T, Fujihara K, Nakashima I, et al. Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: a study on antibody titre. Brain. 2007;130:1235–43.

    Article  PubMed  Google Scholar 

  29. Wingerchuk DM, Lennon VA, Pittock SJ, et al. Revised diagnostic criteria for neuromyelitis optica. Neurology. 2006;66:1485–9.

    Article  CAS  PubMed  Google Scholar 

  30. Sato DK, Callegaro D, Lana-Peixoto MA, et al. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology. 2014;82:474–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tobin WO, Weinshenker BG, Lucchinetti CF. Longitudinally extensive transverse myelitis. Curr Opin Neurol. 2014;27:279–89.

    Article  PubMed  Google Scholar 

  32. Bakker J, Metz L. Devic’s neuromyelitis optica treated with intravenous gamma globulin (IVIG). Can J Neurol Sci J Can Sci Neurol. 2004;31:265–7.

    Article  Google Scholar 

  33. Nozaki I, Hamaguchi T, Komai K, et al. Fulminant Devic disease successfully treated by lymphocytapheresis. J Neurol Neurosurg Psychiatry. 2006;77:1094–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kira J, Yamasaki R, Yoshimura S, et al. Efficacy of methylprednisolone pulse therapy for acute relapse in Japanese patients with multiple sclerosis and neuromyelitis optica: a multicenter retrospective analysis – 1. Whole group analysis. Clin Exp Neuroimmunol. 2013;4:305–17.

    Article  CAS  Google Scholar 

  35. Bonnan M, Cabre P. Plasma exchange in severe attacks of neuromyelitis optica. Mult Scler Int. 2012;2012:787630.

    PubMed  PubMed Central  Google Scholar 

  36. Keegan M, Pineda AA, McClelland RL, et al. Plasma exchange for severe attacks of CNS demyelination: predictors of response. Neurology. 2002;58:143–6.

    Article  CAS  PubMed  Google Scholar 

  37. Kim SH, Kim W, Huh SY, et al. Clinical efficacy of plasmapheresis in patients with neuromyelitis optica spectrum disorder and effects on circulating anti-aquaporin-4 antibody levels. J Clin Neurol. 2013;9:36–42.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yoshida H, Ando A, Sho K, et al. Anti-aquaporin-4 antibody-positive optic neuritis treated with double-filtration plasmapheresis. J Ocul Pharmacol Therapeut. 2010;26:381–5.

    Article  CAS  Google Scholar 

  39. Kobayashi M, Nanri K, Taguchi T, et al. Immunoadsorption therapy for neuromyelitis optica spectrum disorders long after the acute phase. J Clin Apher. 2015;30(1):43–5.

    Google Scholar 

  40. Szczepiorkowski ZM, Winters JL, Bandarenko N, et al. Guidelines on the use of therapeutic apheresis in clinical practice – evidence-based approach from the Apheresis Applications Committee of the American Society for Apheresis. J Clin Apher. 2010;25:83–177.

    Article  PubMed  Google Scholar 

  41. Merle H, Olindo S, Jeannin S, et al. Treatment of optic neuritis by plasma exchange (add-on) in neuromyelitis optica. Arch Ophthalmol. 2012;130:858–62.

    Article  PubMed  Google Scholar 

  42. Bonnan M, Valentino R, Olindo S, et al. Plasma exchange in severe spinal attacks associated with neuromyelitis optica spectrum disorder. Mult Scler. 2009;15:487–92.

    Article  CAS  PubMed  Google Scholar 

  43. Wingerchuk DM. Neuromyelitis optica: potential roles for intravenous immunoglobulin. J Clin Immunol. 2013;33 Suppl 1:S33–7.

    Article  PubMed  Google Scholar 

  44. Yaguchi H, Sakushima K, Takahashi I, et al. Efficacy of intravenous cyclophosphamide therapy for neuromyelitis optica spectrum disorder. Intern Med. 2013;52:969–72.

    Article  CAS  PubMed  Google Scholar 

  45. Greenberg BM, Thomas KP, Krishnan C, et al. Idiopathic transverse myelitis: corticosteroids, plasma exchange, or cyclophosphamide. Neurology. 2007;68:1614–7.

    Article  CAS  PubMed  Google Scholar 

  46. Watanabe S, Misu T, Miyazawa I, et al. Low-dose corticosteroids reduce relapses in neuromyelitis optica: a retrospective analysis. Mult Scler. 2007;13:968–74.

    Article  CAS  PubMed  Google Scholar 

  47. Costanzi C, Matiello M, Lucchinetti CF, et al. Azathioprine: tolerability, efficacy, and predictors of benefit in neuromyelitis optica. Neurology. 2011;77:659–66.

    Article  CAS  PubMed  Google Scholar 

  48. Kowarik MC, Soltys J, Bennett JL. The treatment of neuromyelitis optica. J Neuroophthalmol. 2014;34:70–82.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jacob A, Matiello M, Weinshenker BG, et al. Treatment of neuromyelitis optica with mycophenolate mofetil: retrospective analysis of 24 patients. Arch Neurol. 2009;66:1128–33.

    Article  PubMed  Google Scholar 

  50. Kitley J, Elsone L, George J, et al. Methotrexate is an alternative to azathioprine in neuromyelitis optica spectrum disorders with aquaporin-4 antibodies. J Neurol Neurosurg Psychiatry. 2013;84:918–21.

    Article  PubMed  Google Scholar 

  51. Bichuetti DB, Oliveira EM, Boulos Fde C, et al. Lack of response to pulse cyclophosphamide in neuromyelitis optica: evaluation of 7 patients. Arch Neurol. 2012;69:938–9.

    Article  PubMed  Google Scholar 

  52. Kim SH, Kim W, Park MS, et al. Efficacy and safety of mitoxantrone in patients with highly relapsing neuromyelitis optica. Arch Neurol. 2011;68:473–9.

    Article  PubMed  Google Scholar 

  53. Miyamoto K, Kusunoki S. Intermittent plasmapheresis prevents recurrence in neuromyelitis optica. Therapeut Apher Dial. 2009;13:505–8.

    Article  Google Scholar 

  54. Barnett MH, Prineas JW, Buckland ME, et al. Massive astrocyte destruction in neuromyelitis optica despite natalizumab therapy. Mult Scler. 2012;18:108–12.

    Article  CAS  PubMed  Google Scholar 

  55. Shimizu J, Hatanaka Y, Hasegawa M, et al. IFNbeta-1b may severely exacerbate Japanese optic-spinal MS in neuromyelitis optica spectrum. Neurology. 2010;75:1423–7.

    Article  CAS  PubMed  Google Scholar 

  56. Warabi Y, Matsumoto Y, Hayashi H. Interferon beta-1b exacerbates multiple sclerosis with severe optic nerve and spinal cord demyelination. J Neurol Sci. 2007;252:57–61.

    Article  CAS  PubMed  Google Scholar 

  57. Kim SH, Kim W, Li XF, et al. Does interferon beta treatment exacerbate neuromyelitis optica spectrum disorder? Mult Scler. 2012;18:1480–3.

    Article  PubMed  Google Scholar 

  58. Palace J, Leite MI, Nairne A, et al. Interferon Beta treatment in neuromyelitis optica: increase in relapses and aquaporin 4 antibody titers. Arch Neurol. 2010;67:1016–7.

    Article  PubMed  Google Scholar 

  59. Kleiter I, Hellwig K, Berthele A, et al. Failure of natalizumab to prevent relapses in neuromyelitis optica. Arch Neurol. 2012;69:239–45.

    Article  PubMed  Google Scholar 

  60. Min JH, Kim BJ, Lee KH. Development of extensive brain lesions following fingolimod (FTY720) treatment in a patient with neuromyelitis optica spectrum disorder. Mult Scler. 2012;18:113–5.

    Article  CAS  PubMed  Google Scholar 

  61. Cree BA, Lamb S, Morgan K, et al. An open label study of the effects of rituximab in neuromyelitis optica. Neurology. 2005;64:1270–2.

    Article  CAS  PubMed  Google Scholar 

  62. Greenberg BM, Graves D, Remington G, et al. Rituximab dosing and monitoring strategies in neuromyelitis optica patients: creating strategies for therapeutic success. Mult Scler. 2012;18:1022–6.

    Article  PubMed  Google Scholar 

  63. Jacob A, Weinshenker BG, Violich I, et al. Treatment of neuromyelitis optica with rituximab: retrospective analysis of 25 patients. Arch Neurol. 2008;65:1443–8.

    Article  PubMed  Google Scholar 

  64. Kim SH, Kim W, Li XF, et al. Repeated treatment with rituximab based on the assessment of peripheral circulating memory B cells in patients with relapsing neuromyelitis optica over 2 years. Arch Neurol. 2011;68:1412–20.

    Article  PubMed  Google Scholar 

  65. Bedi GS, Brown AD, Delgado SR, et al. Impact of rituximab on relapse rate and disability in neuromyelitis optica. Mult Scler. 2011;17:1225–30.

    Article  CAS  PubMed  Google Scholar 

  66. Kim SH, Huh SY, Lee SJ, et al. A 5-year follow-up of rituximab treatment in patients with neuromyelitis optica spectrum disorder. JAMA Neurol. 2013;70:1110–7.

    Article  PubMed  Google Scholar 

  67. Jarius S, Aboul-Enein F, Waters P, et al. Antibody to aquaporin-4 in the long-term course of neuromyelitis optica. Brain. 2008;131:3072–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pellkofer HL, Krumbholz M, Berthele A, et al. Long-term follow-up of patients with neuromyelitis optica after repeated therapy with rituximab. Neurology. 2011;76:1310–5.

    Article  CAS  PubMed  Google Scholar 

  69. Carson KR, Focosi D, Major EO, et al. Monoclonal antibody-associated progressive multifocal leucoencephalopathy in patients treated with rituximab, natalizumab, and efalizumab: a review from the Research on Adverse Drug Events and Reports (RADAR) Project. Lancet Oncol. 2009;10:816–24.

    Article  CAS  PubMed  Google Scholar 

  70. Uzawa A, Mori M, Sawai S, et al. Cerebrospinal fluid interleukin-6 and glial fibrillary acidic protein levels are increased during initial neuromyelitis optica attacks. Clin Chim Acta. 2013;421:181–3.

    Article  CAS  PubMed  Google Scholar 

  71. Wang H, Wang K, Zhong X, et al. Notable increased cerebrospinal fluid levels of soluble interleukin-6 receptors in neuromyelitis optica. Neuroimmunomodulation. 2012;19:304–8.

    Article  PubMed  Google Scholar 

  72. Chihara N, Aranami T, Oki S, et al. Plasmablasts as migratory IgG-producing cells in the pathogenesis of neuromyelitis optica. PLoS ONE. 2013;8, e83036.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chihara N, Aranami T, Sato W, et al. Interleukin 6 signaling promotes anti-aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica. Proc Natl Acad Sci U S A. 2011;108:3701–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Araki M, Aranami T, Matsuoka T, et al. Clinical improvement in a patient with neuromyelitis optica following therapy with the anti-IL-6 receptor monoclonal antibody tocilizumab. Mod Rheumatol Jpn Rheum Assoc. 2013;23:827–31.

    Article  CAS  Google Scholar 

  75. Ayzenberg I, Kleiter I, Schroder A, et al. Interleukin 6 receptor blockade in patients with neuromyelitis optica nonresponsive to anti-CD20 therapy. JAMA Neurol. 2013;70:394–7.

    Article  PubMed  Google Scholar 

  76. Kieseier BC, Stuve O, Dehmel T, et al. Disease amelioration with tocilizumab in a treatment-resistant patient with neuromyelitis optica: implication for cellular immune responses. JAMA Neurol. 2013;70:390–3.

    Article  PubMed  Google Scholar 

  77. Komai T, Shoda H, Yamaguchi K, et al. Neuromyelitis optica spectrum disorder complicated with Sjogren syndrome successfully treated with tocilizumab: a case report. Mod Rheumatol. 2016;26(2):294–6.

    Google Scholar 

  78. Kinoshita M, Nakatsuji Y, Moriya M, et al. Astrocytic necrosis is induced by anti-aquaporin-4 antibody-positive serum. Neuroreport. 2009;20:508–12.

    Article  CAS  PubMed  Google Scholar 

  79. Saadoun S, Waters P, Bell BA, et al. Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain. 2010;133:349–61.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhang H, Bennett JL, Verkman AS. Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms. Ann Neurol. 2011;70:943–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pittock SJ, Lennon VA, McKeon A, et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol. 2013;12:554–62.

    Article  CAS  PubMed  Google Scholar 

  82. Feasby T, Banwell B, Benstead T, et al. Guidelines on the use of intravenous immune globulin for neurologic conditions. Transfus Med Rev. 2007;21:S57–107.

    Article  PubMed  Google Scholar 

  83. Jacob S, Rajabally YA. Current proposed mechanisms of action of intravenous immunoglobulins in inflammatory neuropathies. Curr Neuropharmacol. 2009;7:337–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Elsone L, Panicker J, Mutch K, et al. Role of intravenous immunoglobulin in the treatment of acute relapses of neuromyelitis optica: experience in 10 patients. Mult Scler. 2014;20:501–4.

    Article  CAS  PubMed  Google Scholar 

  85. Okada K, Tsuji S, Tanaka K. Intermittent intravenous immunoglobulin successfully prevents relapses of neuromyelitis optica. Intern Med. 2007;46:1671–2.

    Article  PubMed  Google Scholar 

  86. Magraner MJ, Coret F, Casanova B. The effect of intravenous immunoglobulin on neuromyelitis optica. Neurologia. 2013;28:65–72.

    Article  CAS  PubMed  Google Scholar 

  87. Ratelade J, Smith AJ, Verkman AS. Human immunoglobulin G reduces the pathogenicity of aquaporin-4 autoantibodies in neuromyelitis optica. Exp Neurol. 2014;255:145–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Saadoun S, Waters P, MacDonald C, et al. Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin G-induced damage in mouse brain. Ann Neurol. 2012;71:323–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Young RE, Thompson RD, Larbi KY, et al. Neutrophil elastase (NE)-deficient mice demonstrate a nonredundant role for NE in neutrophil migration, generation of proinflammatory mediators, and phagocytosis in response to zymosan particles in vivo. J Immunol. 2004;172:4493–502.

    Article  CAS  PubMed  Google Scholar 

  90. Tradtrantip L, Zhang H, Saadoun S, et al. Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Ann Neurol. 2012;71:314–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Nakatsuji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Nakatsuji, Y. et al. (2016). Neuromyelitis Optica: Diagnosis and Treatment. In: Kusunoki, S. (eds) Neuroimmunological Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55594-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55594-0_8

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55593-3

  • Online ISBN: 978-4-431-55594-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics