Skip to main content

Characteristics of Crystal Transitions Among Pseudopolymorphs

  • Chapter
Advances in Organic Crystal Chemistry

Abstract

Reversible phase transitions among the pseudopolymorphs of nucleoside and nucleotide hydrates were induced by humidity (vapor pressure of water) and temperature conditions. A single crystal state at a high frequency was retained after these transitions, and the original, the final, and in some cases the intermediate crystal structures were determined. On the basis of the determined structures and information from complementary methods (e.g., Raman spectroscopy and molecular dynamics simulation), the characteristics of the transitions (i.e., conformational changes, sliding of molecular layers, and cyclic and bifurcated transitions) were revealed. The transition schemes and mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.K. Haleblian, J. Pharm. Sci. 64, 1269–1288 (1975)

    Article  CAS  Google Scholar 

  2. S. Byrn, R. Pfeiffer, M. Ganey, C. Hoiberg, G. Poochikian, Pharm. Res. 12, 945–954 (1995)

    Article  CAS  Google Scholar 

  3. J. Bernstein, Polymorphism in Molecular Crystals (Clarendon, Oxford, 2002)

    Google Scholar 

  4. J. Bernstein, A.T. Hagler, J. Am. Chem. Soc. 100, 673–681 (1978)

    Article  CAS  Google Scholar 

  5. A. Nangia, Acc. Chem. Res. 41, 595–604 (2008)

    Article  CAS  Google Scholar 

  6. G.R. Desirau, Angew. Chem. Int. Ed. Eng. 34, 2311–2327 (1995)

    Article  Google Scholar 

  7. A. Nangia, Cryst. Growth Des. 6, 2–4 (2006)

    Article  CAS  Google Scholar 

  8. J. Bernstein, R.J. Davey, J.-O. Henck, Angew. Chem. Int. Ed. 38, 3440–3461 (1999)

    Article  Google Scholar 

  9. R. Černý, V. Favre-Nicolin, Z. Kristallogr. 222, 105–113 (2007)

    Google Scholar 

  10. W. Saenger, Principles of Nucleic Acid Structure (Springer, New York/Berlin, 1983)

    Google Scholar 

  11. M. Falk, Can. J. Chem. 43, 314–318 (1965)

    Article  CAS  Google Scholar 

  12. Y. Sugawara, A. Nakamura, Y. Iimura, K. Kobayashi, H. Urabe, J. Phys. Chem. B 106, 10363–10368 (2002)

    Article  CAS  Google Scholar 

  13. Y. Sugawara, N. Kamiya, H. Iwasaki, T. Ito, Y. Satow, J. Am. Chem. Soc. 113, 5440–5445 (1991)

    Article  CAS  Google Scholar 

  14. O. Kennard, N.W. Isaacs, W.D.S. Motherwell, J.C. Coppola, D.L. Wampler, A.C. Larson, D.G. Watson, Proc. R. Soc. Lond. A A325, 401–436 (1971)

    Article  Google Scholar 

  15. A.C. Larson, Acta Crysrallogr. B 34, 3601–3604 (1978)

    Article  Google Scholar 

  16. H. Urabe, Y. Sugawara, T. Kasuya, Phys. Rev. B 51, 5666–5672 (1995)

    Article  CAS  Google Scholar 

  17. Y.V. Mnyukh, Mol. Cryst. Liq. Cryst. 52, 163–200 (1979)

    Article  Google Scholar 

  18. U. Thewalt, C.E. Bugg, R.E. Marsh, Acta Crystallogr. B 26, 1089–1101 (1970)

    Article  CAS  Google Scholar 

  19. Y. Sugawara, Y. Iimura, H. Iwasaki, H. Urabe, H. Saito, J. Biomol. Struct. Dyn. 11, 721–729 (1994)

    Article  CAS  Google Scholar 

  20. Y. Sugawara, S. Yamamura, S. Yoneda, K. Osaka, K. Miura, Abstracts of Joint Congress of ACTS-2014 and CGOM11, OC-CGOM-35, Nara (2014)

    Google Scholar 

  21. D.W. Young, P. Tollin, H.R. Wilson, Acta Crystallogr. B 30, 2012–2018 (1974)

    Article  Google Scholar 

  22. S. Yamamura, T. Moriguchi, S. Yoneda, Y. Sugawara, Acta Crystallogr. A 61, C326–C327 (2005)

    Article  Google Scholar 

  23. E. Subramanian, Cryst. Struct. Commun. 8, 777–785 (1979)

    CAS  Google Scholar 

  24. S. Yoneda, Y. Sugawara, H. Urabe, J. Phys. Chem. B 109, 1304–1312 (2005)

    Article  CAS  Google Scholar 

  25. H. Urabe, Y. Sugawara, M. Tsukakoshi, T. Kasuya, J. Chem. Phys. 95, 5519–5523 (1991)

    Article  CAS  Google Scholar 

  26. H. Urabe, Y. Tominaga, Biopolymers 21, 2477–2481 (1982)

    Article  CAS  Google Scholar 

  27. M. Tsubonoya, Master Thesis, Graduate School of Science, Kitasato University, Kanagawa, Japan, 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoko Sugawara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Sugawara, Y. (2015). Characteristics of Crystal Transitions Among Pseudopolymorphs. In: Tamura, R., Miyata, M. (eds) Advances in Organic Crystal Chemistry. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55555-1_16

Download citation

Publish with us

Policies and ethics