Skip to main content

Fine Structure of Amylose

  • Chapter
Starch

Abstract

Amylose is usually the second most abundant component of starch, accounting for typically 20–30 % of its weight. In contrast to the more abundant, highly branched amylopectin, amylose is generally recognized as a linear or slightly branched molecule, both of which are present in amylose prepared from native starch. The structure of amylose can be described in terms of its size and branching. The size of amylose differs depending on the source of the starch, with average degree of polymerization in the range of ∼1,000 to ∼5,000. The branching of amylose can be characterized as a whole, or for the branched components by several structural indices, including its β-amylolysis limit (70–90 %), average chain length (200–500), number of chains per molecule (5–20, for the branched molecules), and molar fraction of branched molecule (0.2–0.5). Debranching of amylose with isoamylase and/or pullulanase is incomplete (up to ∼80 %), but still the size distribution of the debranched product can be informative. The main chain of the debranched product is comparable in size to the native amylose. A small number of long side chains are present with a chain length of from several hundred to a similar length as the main chain. The vast majority of the side chains on a molar basis are short chains, which have a chain-length distribution similar to that of amylopectin. The side chains are not arranged in a cluster fashion, which is a common fundamental structural characteristic of amylopectin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins GK, Greenwood CT (1969) Studies on starches of high amylose-content: Part X. An improved method for the fractionation of maize and amylomaize starches by complex formation from aqueous dispersion after pretreatment with methyl sulphoxide. Carbohydr Res 11:217–224

    Article  CAS  Google Scholar 

  • Baba T, Yoshii M, Kainuma K (1987) Acceptor molecule of granular-bound starch synthase from sweet-potato roots. Starch-Starke 39:52–56

    Article  CAS  Google Scholar 

  • Banks W, Greenwood CT (1966) The fine structure of amylose: the action of pullulanase as evidence of branching. Arch Biochem Biophys 117:674–675

    Article  CAS  Google Scholar 

  • Banks W, Greenwood CT (1967a) Physicochemical studies on starches Part XXXII. The Incomplete β-amylolysis of amylose: a discussion of its cause and implications. Starch-Starke 19:197–206

    Article  CAS  Google Scholar 

  • Banks W, Greenwood CT (1967b) The fractionation of laboratory-isolated cereal starches using dimethyl sulphoxide. Starch-Starke 19:394–398

    Article  CAS  Google Scholar 

  • Banks W, Greenwood CT, Thomson J (1959) The properties of amylose as related to the fractionation and subfractionation of starch. Makromol Chem 31:197–213

    Article  CAS  Google Scholar 

  • Bates FL, French D, Rundle RE (1943) Amylose and amylopectin content of starches determined by their iodine complex formation. J Am Chem Soc 65:142–148

    Article  CAS  Google Scholar 

  • Bertoft E (2004) On the nature of categories of chains in amylopectin and their connection to the super helix model. Carbohydr Polym 57:211–224

    Article  CAS  Google Scholar 

  • Bourne EJ, Donnison GH, Haworth N et al (1948) Thymol and cyclohexanol as fractionating agents for starch. J Chem Soc 1687–1693

    Google Scholar 

  • Cheetham NWH, Tao L (1998) Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym 36:277–284

    Article  CAS  Google Scholar 

  • Colonna P, Mercier C (1984) Macromolecular structure of wrinkled- and smooth-pea starch components. Carbohydr Res 126:233–247

    Article  CAS  Google Scholar 

  • Denyer K, Clarke B, Hylton C et al (1996) The elongation of amylose and amylopectin chains in isolated starch granules. Plant J 10:1135–1143

    Article  CAS  Google Scholar 

  • Fredriksson H, Silverio J, Andersson R et al (1998) The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr Polym 35:119–134

    Article  CAS  Google Scholar 

  • French D (1972) Fine structure of starch and its relationship to the organization of starch granules. Denpun Kagaku 19:8–25

    CAS  Google Scholar 

  • French D, Pulley AO, Whelan WJ (1963) Starch fractionation by hydrophobic complex formation. Starch-Starke 15:349–354

    Article  CAS  Google Scholar 

  • Greenwood CT, Thomson J (1962) Physicochemical studies on starches. Part XXIV. The fractionation and characterization of starches of various plant origins. J Chem Soc 222–229

    Google Scholar 

  • Gunning AP, Giardina TP, Faulds CB et al (2003) Surfactant-mediated solubilisation of amylose and visualisation by atomic force microscopy. Carbohydr Polym 51:177–182

    Article  CAS  Google Scholar 

  • Hanashiro I, Takeda Y (1998) Examination of number-average degree of polymerization and molar-based distribution of amylose by fluorescent labeling with 2-aminopyridine. Carbohydr Res 306:421–426

    Article  CAS  PubMed  Google Scholar 

  • Hanashiro I, Tagawa M, Shibahara S et al (2002) Examination of molar-based distribution of A, B, and C chains of amylopectin by fluorescent labeling with 2-aminopyridine. Carbohydr Res 337:1211–1215

    Article  CAS  PubMed  Google Scholar 

  • Hanashiro I, Matsugasako J, Egashira T et al (2005) Structural characterization of long unit-chains of amylopectin. J Appl Glycosci 52:233–237

    Article  CAS  Google Scholar 

  • Hanashiro I, Itoh K, Kuratomi Y et al (2008) Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice. Plant Cell Physiol 49:925–933

    Article  CAS  PubMed  Google Scholar 

  • Hanashiro I, Wakayama T, Hasegawa M et al (2009) Structures of endosperm starch from a rice wx cultivar expressing Wx a transgene. J Appl Glycosci 56:65–70

    Article  CAS  Google Scholar 

  • Hanashiro I, Higuchi T, Aihara S et al (2011) Structures of starches from rice mutants deficient in the starch synthase isozyme SSI or SSIIIa. Biomacromolecules 12:1621–1628

    Article  CAS  PubMed  Google Scholar 

  • Hanashiro I, Sakaguchi I, Yamashita H (2013) Branched structures of rice amylose examined by differential fluorescence detection of side-chain distribution. J Appl Glycosci 60:79–85

    Article  CAS  Google Scholar 

  • Harada T, Misaki A, Akai H et al (1972) Characterization of Pseudomonas isoamylase by its actions on amylopectin and glycogen: comparison with Aerobacter pullulanase. Biochim Biophys Acta 268:497–505

    Article  CAS  PubMed  Google Scholar 

  • Haworth WN (1939) The structure of cellulose and other polymers related to simple sugars. J Soc Chem Ind 58:917–925

    Article  Google Scholar 

  • Hizukuri S (1985) Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules. Carbohydr Res 141:295–306

    Article  CAS  Google Scholar 

  • Hizukuri S (1986) Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr Res 147:342–347

    Article  CAS  Google Scholar 

  • Hizukuri S (1991) Properties of hot-water-extractable amylose. Carbohydr Res 217:251–253

    Article  CAS  Google Scholar 

  • Hizukuri S, Takagi T (1984) Estimation of the distribution of molecular weight for amylose by the low-angle laser-light-scattering technique combined with high-performance gel chromatography. Carbohydr Res 134:1–10

    Article  CAS  Google Scholar 

  • Hizukuri S, Takeda Y, Yasuda M et al (1981) Multi-branched nature of amylose and the action of debranching enzymes. Carbohydr Res 94:205–213

    Article  CAS  Google Scholar 

  • Hizukuri S, Takeda Y, Maruta N et al (1989) Molecular structures of rice starch. Carbohydr Res 189:227–235

    Article  CAS  Google Scholar 

  • Horibata T, Nakamoto M, Fuwa H et al (2004) Structural and physicochemical characteristics of endosperm starches of rice cultivars recently bred in Japan. J Appl Glycosci 51:303–313

    Article  CAS  Google Scholar 

  • Jane JL, Shen JJ (1993) Internal structure of the potato starch granule revealed by chemical gelatinization. Carbohydr Res 247:279–290

    Article  CAS  Google Scholar 

  • Jane J, Xu A, Radosavljevic M et al (1992) Location of amylose in normal starch granules. I. Susceptibility of amylose and amylopectin to cross-linking reagents. Cereal Chem 69:405–409

    CAS  Google Scholar 

  • Jane J, Chen YY, Lee LF et al (1999) Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem 76:629–637

    Article  CAS  Google Scholar 

  • Juliano BO, Tuaño APP, Monteroso DN et al (2012) Replacement of acetate with ammonium buffer to determine apparent amylose content of milled rice. Cereal Food World 57:14–19

    Article  CAS  Google Scholar 

  • Kasemsuwan T, Jane J (1994) Location of amylose in normal starch granules. II: Locations of phosphodiester cross-linking revealed by phosphorus-31 nuclear magnetic resonance. Cereal Chem 71:282–287

    CAS  Google Scholar 

  • Killion PJ, Foster JF (1960) Isolation of high molecular weight amylose by dimethylsulfoxide dispersion. J Polym Sci 46:65–73

    Article  CAS  Google Scholar 

  • Kjølberg O, Manners DJ (1963) Studies on carbohydrate-metabolizing enzymes. 9. The action of isoamylase on amylose. Biochem J 86:258–262

    PubMed Central  PubMed  Google Scholar 

  • Koizumi K, Fukuda M, Hizukuri S (1991) Estimation of the distributions of chain length of amylopectins by high-performance liquid chromatography with pulsed amperometric detection. J Chromatogr A 585:233–238

    Article  CAS  Google Scholar 

  • Lansky S, Kooi M, Schoch TJ (1949) Properties of the fractions and linear subfractions from various starches. J Am Chem Soc 71:4066–4075

    Article  CAS  Google Scholar 

  • Larson BL, Gilles KA, Jenness R (1953) Amperometric method for determining sorption of iodine by starch. Anal Chem 25:802–804

    Article  CAS  Google Scholar 

  • Matheson NK (1996) The chemical structure of amylose and amylopectin fractions of starch from tobacco leaves during development and diurnally–nocturnally. Carbohydr Res 282:247–262

    Article  CAS  PubMed  Google Scholar 

  • Matheson NK, Welsh LA (1988) Estimation and fractionation of the essentially unbranched (amylose) and branched (amylopectin) components of starches with concanavalin A. Carbohydr Res 180:301–313

    Article  CAS  Google Scholar 

  • McCready RM, Hassid WZ (1943) The separation and quantitative estimation of amylose and amylopectin in potato starch. J Am Chem Soc 65:1154–1157

    Article  CAS  Google Scholar 

  • Mercier C (1973) The fine structure of corn starches of various amylose-percentage: waxy, normal and amylomaize. Starch-Starke 25:78–83

    Article  CAS  Google Scholar 

  • Meyer KH, Bernfeld P, Wolff E (1940a) Recherches sur l’amidon III. Fractionnement et purification de l’amylose de maïs naturel. Helv Chim Acta 23:854–864

    Article  CAS  Google Scholar 

  • Meyer KH, Brentano W, Bernfeld P (1940b) Recherches sur l’amidon II. Sur la nonhomogénéité de l’amidon. Helv Chim Acta 23:845–853

    Article  CAS  Google Scholar 

  • Meyer KH, Wertheim M, Bernfeld P (1940c) Recherches sur l’amidon IV. Méthylation et détermination des groupes terminaux d’amylose et d’amylopectine de maïs. Helv Chim Acta 23:865–875

    Article  CAS  Google Scholar 

  • Miles MJ, Morris VJ, Ring SG (1985) Gelation of amylose. Carbohydr Res 135:257–269

    Article  CAS  Google Scholar 

  • Morrison WR, Gadan H (1987) The amylose and lipid contents of starch granules in developing wheat endosperm. J Cereal Sci 5:263–275

    Article  CAS  Google Scholar 

  • Nikuni Z (1969) Denpun to chori. Chori Kagaku 2:6–14 (in Japanese)

    Google Scholar 

  • Pan DD, Jane JL (2000) Internal structure of normal maize starch granules revealed by chemical surface gelatinization. Biomacromolecules 1:126–132

    Article  CAS  PubMed  Google Scholar 

  • Peat S, Whelan WJ, Pirt SJ (1949) The amylolytic enzymes of soya bean. Nature 164:499–500

    Article  CAS  PubMed  Google Scholar 

  • Peat S, Pirt SJ, Whelan WJ (1952) Enzymic synthesis and degradation of starch. Part XV. β-Amylase and the constitution of amylose. J Chem Soc 705–713

    Google Scholar 

  • Potter AL, Hassid WZ (1948a) Starch. I. End-group determination of amylose and amylopectin by periodate oxidation. J Am Chem Soc 70:3488–3490

    Article  CAS  PubMed  Google Scholar 

  • Potter AL, Hassid WZ (1948b) Starch. II. Molecular weights of amyloses and amylopectins from starches of various plant origins. J Am Chem Soc 70:3774–3777

    Article  CAS  PubMed  Google Scholar 

  • Potter AL, Hassid WZ (1951) Starch. IV. The molecular constitution of amylose subfractions. J Am Chem Soc 73:593–595

    Article  CAS  Google Scholar 

  • Sasaki T, Yasui T, Matsuki J (2000) Effect of amylose content on gelatinization, retrogradation, and pasting properties of starches from waxy and nonwaxy wheat and their F1 seeds. Cereal Chem 77:58–63

    Article  CAS  Google Scholar 

  • Schoch TJ (1945) The fractionation of starch. Adv Carbohydr Chem 1:247–277

    CAS  PubMed  Google Scholar 

  • Shi YC, Capitani T, Trzasko P et al (1998) Molecular structure of a low-amylopectin starch and other high-amylose maize starches. J Cereal Sci 27:289–299

    Article  CAS  Google Scholar 

  • Shibanuma K, Takeda Y, Hizukuri S et al (1994) Molecular structures of some wheat starches. Carbohydr Polym 25:111–116

    Article  CAS  Google Scholar 

  • Shibanuma Y, Takeda Y, Hizukuri S (1996) Molecular and pasting properties of some wheat starches. Carbohydr Polym 29:253–261

    Article  CAS  Google Scholar 

  • Staudinger H, Husemann E (1937) Über hochpolymere Verbindungen. Über die Konstitution der Stärke. Liebigs Ann Chem 527:195–236

    Article  CAS  Google Scholar 

  • Takeda Y, Preiss J (1993) Structures of B90 (sugary) and W64A (normal) maize starches. Carbohydr Res 240:265–275

    Article  CAS  Google Scholar 

  • Takeda Y, Shirasaka K, Hizukuri S (1984) Examination of the purity and structure of amylose by gel-permeation chromatography. Carbohydr Res 132:83–92

    Article  CAS  Google Scholar 

  • Takeda Y, Hizukuri S, Juliano BO (1986a) Purification and structure of amylose from rice starch. Carbohydr Res 148:299–308

    Article  CAS  Google Scholar 

  • Takeda Y, Tokunaga N, Takeda C et al (1986b) Physicochemical properties of sweet potato starches. Starch-Starke 38:345–350

    Article  CAS  Google Scholar 

  • Takeda Y, Hizukuri S, Juliano BO (1987a) Structures of rice amylopectins with low and high affinities for iodine. Carbohydr Res 168:79–88

    Article  CAS  Google Scholar 

  • Takeda Y, Hizukuri S, Takeda C et al (1987b) Structures of branched molecules of amyloses of various origins, and molar fractions of branched and unbranched molecules. Carbohydr Res 165:139–145

    Article  CAS  Google Scholar 

  • Takeda Y, Shitaozono T, Hizukuri S (1988) Molecular structure of corn starch. Starch-Starke 40:51–54

    Article  CAS  Google Scholar 

  • Takeda Y, Maruta N, Hizukuri S et al (1989a) Structures of indica rice starches (IR48 and IR64) having intermediate affinities for iodine. Carbohydr Res 187:287–294

    Article  CAS  Google Scholar 

  • Takeda C, Takeda Y, Hizukuri S (1989b) Structure of amylomaize amylose. Cereal Chem 66:22–25

    CAS  Google Scholar 

  • Takeda Y, Shitaozono T, Hizukuri S (1990) Structures of sub-fractions of corn amylose. Carbohydr Res 199:207–214

    Article  CAS  Google Scholar 

  • Takeda Y, Maruta N, Hizukuri S (1992a) Structures of amylose subfractions with different molecular sizes. Carbohydr Res 226:279–285

    Article  CAS  Google Scholar 

  • Takeda Y, Maruta N, Hizukuri S (1992b) Examination of the structure of amylose by tritium labelling of the reducing terminal. Carbohydr Res 227:113–120

    Article  CAS  Google Scholar 

  • Takeda Y, Tomooka S, Hizukuri S (1993) Structures of branched and linear molecules of rice amylose. Carbohydr Res 246:267–272

    Article  CAS  Google Scholar 

  • Takeda Y, Takeda C, Mizukami H et al (1999) Structures of large, medium and small starch granules of barley grain. Carbohydr Polym 38:109–114

    Article  CAS  Google Scholar 

  • Takeda Y, Shibahara S, Hanashiro I (2003) Examination of the structure of amylopectin molecules by fluorescent labeling. Carbohydr Res 338:471–475

    Article  CAS  PubMed  Google Scholar 

  • Tatge H, Marshall J, Martin C et al (1999) Evidence that amylose synthesis occurs within the matrix of the starch granule in potato tubers. Plant Cell Environ 22:543–550

    Article  CAS  Google Scholar 

  • Tester RF, Morrison WR (1990) Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem 67:551–557

    CAS  Google Scholar 

  • Utsumi Y, Yoshida M, Francisco PB Jr et al (2009) Quantitative assay method for starch branching enzyme with bicinchoninic acid by measuring the reducing terminals of glucans. J Appl Glycosci 56:215–222

    Article  CAS  Google Scholar 

  • Würsch P, Hood LF (1981) Structure of starch from mango seed. Starch-Starke 33:217–221

    Article  Google Scholar 

  • Yoshimoto Y, Tashiro J, Takenouchi T et al (2000) Molecular structure and some physicochemical properties of high-amylose barley starches. Cereal Chem 77:279–285

    Article  CAS  Google Scholar 

  • Yoshimoto Y, Matsuda M, Hanashiro I et al (2001) Molecular structure and pasting properties of legume starches. J Appl Glycosci 48:317–324

    Article  CAS  Google Scholar 

  • Yoshimoto Y, Takenouchi T, Takeda Y (2002) Molecular structure and some physicochemical properties of waxy and low-amylose barley starches. Carbohydr Polym 47:159–167

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Hanashiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Hanashiro, I. (2015). Fine Structure of Amylose. In: Nakamura, Y. (eds) Starch. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55495-0_2

Download citation

Publish with us

Policies and ethics