Skip to main content

Doubly Bonded Silicon Compounds Showing Intramolecular Charge-Transfer Transitions

  • Chapter
Chemical Science of π-Electron Systems

Abstract

Recent study of doubly bonded silicon compounds showing intramolecular charge-transfer transition was reviewed. Trialkylaryldisilenes having 1-naphthyl, 9-phenanthyl, or 9-anthryl substituent were synthesized. X-ray diffraction analysis shows that π(Si=Si) and π(aryl) systems in the trialkylaryldisilenes are almost perpendicular to each other suggesting no significant conjugative interactions between two π systems, but they exhibit intramolecular charge-transfer (ICT) transitions from π(Si=Si) to π*(aryl). Especially, 9-anthryltrialkyldisilene shows a distinct ICT band at 525 nm, which redshifts to 535 nm in more polar 1,2-dichlorobenzene. Reaction of the anthryldisilene gives the corresponding [2 + 1] cycloadduct, disilacyclopropanimine, which undergoes further isomerization to give 3-silylene-2-silaaziridine with 9-anthryl substituent as a novel exocyclic silene. The anthrylsilene shows also a distinct ICT transition from π(Si=C) to π*(aryl). The high energy levels of π(Si=Si) and π(Si=C) and the low-lying π*(aryl) would be responsible for the distinct ICT band of the disilenes and the silene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. West R, Fink MJ, Michl J (1981) Tetramesityldisilene, a stable compound containing a silicon-silicon double bond. Science 214:1343–1344

    Article  CAS  Google Scholar 

  2. Brook AG, Abdesaken F, Gutekunst B, Gutekunst G, Kallury RK (1981) A solid silaethene: isolation and characterization. J Chem Soc Chem Commun 17:191

    Google Scholar 

  3. Brook AG, Nyburg SC, Abdesaken F, Gutekunst B, Gutekunst G, Kallury RKMR, Poon YC, Chang Y-M, Wong-Ng W (1982) Stable solid sitalethylene. J Am Chem Soc 104:5667–5672

    Article  CAS  Google Scholar 

  4. Okazaki R, West R (1996) Chemistry of stable disilenes. Adv Organomet Chem 39:231–273

    CAS  Google Scholar 

  5. Müller T, Ziche W, Auner N (1998) Silicon-carbon and silicon-nitrogen multiply bonded compounds. In: Rappoport Z, Apeloig Y (eds) The chemistry of organic silicon compounds. Wiley, Chichester, pp 857–1062

    Chapter  Google Scholar 

  6. Weidenbruch M (2001) Recent advances in the chemistry of silicon-silicon multiple bonds. In: Rappoport Z, Apeloig Y (eds) Chemistry of Organic Silicon Compounds, vol 3. Wiley, Chichester, pp 391–428

    Chapter  Google Scholar 

  7. Lee VY, Sekiguchi A (2004) Heteronuclear heavy alkenes E = E’ (E, E’=Group 14 Elements): Germasilenes, silastannenes, germastannenes…Next stop? Organometallics 23:2822–2823

    Article  CAS  Google Scholar 

  8. Kira M, Iwamoto T (2006) Progress in the chemistry of stable disilenes. Adv Organomet Chem 54:73–148

    CAS  Google Scholar 

  9. Scheschkewitz D (2011) The versatile chemistry of disilenides: Disila analogues of vinyl anions as synthons in low-valent silicon chemistry. Chem Lett 40:2–11

    Article  CAS  Google Scholar 

  10. Ottosson H, Eklöf AM (2008) Silenes: Connectors between classical alkenes and nonclassical heavy alkenes. Coord Chem Rev 252:1287–1314

    Article  CAS  Google Scholar 

  11. Scheschkewitz D (2009) Anionic reagents with silicon-containing double bonds. Chem Eur J 15:2476–2485

    Article  CAS  Google Scholar 

  12. Lee VY, Sekiguchi A, Escudié J, Ranaivonjatovo H (2010) Heteronuclear double bonds E=E’ (E=heavy group 14, E’=group 13-16 element). Chem Lett 39:312–318

    Article  CAS  Google Scholar 

  13. Sasamori T, Tokitoh N (2013) A new family of multiple-bond compounds between heavier group 14 elements. Bull Chem Soc Jpn 86:1005–1021

    Article  CAS  Google Scholar 

  14. Iwamoto T, Ishida S (2014) Multiple bonds to silicon: recent advances in synthesis, structure, and functions of stable disilenes. In: Scheschkewitz D (ed) Functional molecular silicon compounds II low oxidation state. Structure and Bonding, vol 156. Springer, New York, pp 125–202

    Google Scholar 

  15. Carter EA, Goddard WA III (1986) Relation between singlet-triplet gaps and bond energies. J Phys Chem 90:998–1001

    Article  CAS  Google Scholar 

  16. Trinquier G, Malrieu J-P (1987) Nonclassical distortions at multiple bonds. J Am Chem Soc 109:5303–5315

    Article  CAS  Google Scholar 

  17. Malrieu J-P, Trinquier G (1989) Trans bending at double bonds. Occurrence and extent. J Am Chem Soc 111:5916–5921

    Article  CAS  Google Scholar 

  18. Karni M, Apeloig Y (1990) Substituent effects on the geometries and energies of the Si=Si double bond. J Am Chem Soc 112:8589–8590

    Article  CAS  Google Scholar 

  19. Jacobsen H, Ziegler T (1994) Nonclassical double bonds in ethylene analogues: influence of Pauli repulsion on trans bending and π-bond strength. A density functional study. J Am Chem Soc 114:3667–3679

    Article  Google Scholar 

  20. Sekiguchi A, Maruki I, Ebata K, Kabuto C, Sakurai H (1991) High-pressure synthesis, structure and novel photochemical reactions of 7,7,8,8-tetramethyl-7,8-disilabicyclo[2.2.2]octa-2,5-diene. J Chem Soc, Chem Commun 27:341–343

    Google Scholar 

  21. Tokitoh N (2004) New progress in the chemistry of stable metallaaromatic compounds of heavier group 14 elements. Acc Chem Res 37:86–94

    Article  CAS  Google Scholar 

  22. Nguyen T-I, Scheschkewitz D (2005) Activation of a Si=Si bond by η1-coordination to a transition metal. J Am Chem Soc 127:10174–10175

    Article  CAS  Google Scholar 

  23. Fukawaza A, Li Y, Yamaguchi S, Tsuji H, Tamao K (2007) Coplanar oligo(p-phenylenedisilenylene)s based on the octaethyl-substituted s-hydrindacenyl group. J Am Chem Soc 129:14164–14165

    Article  Google Scholar 

  24. Bejan I, Scheschkewitz D (2007) Two Si-Si double bonds connected by a phenylene bridge. Angew Chem Int Ed 46:5783–5786

    Article  CAS  Google Scholar 

  25. Sasamori T, Yuasa A, Hosoi Y, Furukawa Y, Tokitoh N (2008) 1,2-Bis(ferrocenyl)disilene: a multistep redox system with an Si=Si double bond. Organometallics 27:3325–3327

    Article  CAS  Google Scholar 

  26. Yuasa A, Sasamori T, Hosoi Y, Furukawa Y, Tokitoh N (2009) Synthesis and properties of stable 1,2-bis(metallocenyl)disilenes: novel d–π conjugated systems with a Si=Si double bond. Bull Chem Soc Jpn 82(7):793–805

    Article  CAS  Google Scholar 

  27. Sato T, Mizuhata Y, Tokitoh N (2010) 1,2-Dialkynyldisilenes: silicon analogues of (E)-enediyne. Chem Commun 46:4402–4404

    Article  CAS  Google Scholar 

  28. Tamao K, Kobayashi M, Matsuo T, Furukawa S, Tsuji H (2012) The first observation of electroluminescence from di(2-naphthyl)disilene, an Si=Si double bond-containing π-conjugated compound. Chem Commun 48:1030–1032

    Article  CAS  Google Scholar 

  29. Kinjo R, Ichinohe M, Sekiguchi A, Takagi N, Sumimoto M, Nagase S (2007) Reactivity of a disilyne RSi ≡ SiR (R=SiiPr[CH(SiMe3)2]2 toward π-bonds: Stereospecific addition and a new route to an isolable 1,2-disilabenzene. J Am Chem Soc 129:7766–7767

    Article  CAS  Google Scholar 

  30. Han JS, Sasamori T, Mizuhata Y, Tokitoh N (2010) Reactivity of an aryl-substituted silicon-silicon triple bond: 1,2-disilabenzenes from the reactions of a 1,2-diaryldisilyne with alkynes. Dalton Trans 39(39):9238–9240

    Article  CAS  Google Scholar 

  31. Takeuchi K, Ichinohe M, Sekiguchi A (2008) Reactivity of the disilyne RSi ≡ SiR (R=SiiPr[CH(SiMe3)2]2) toward silylcyanide: Two pathways to form the bis-adduct [RSiSiR(CNSiMe3)2] with some silaketenimine character and a 1,4-diaza-2,3-disilabenzene analogue. J Am Chem Soc 130:16848–16849

    Article  CAS  Google Scholar 

  32. Takeuchi K, Ichinohe M, Sekiguchi A, Guo J-D, Nagase S (2010) Reactivity of the disilyne RSi≡SiR (R=SiiPr[CH(SiMe3)2]2) toward bis(silylcyanide) forming a 1,4-diaza-2,3-disilabenzene analog. J Phys Org Chem 23:390–394

    Google Scholar 

  33. Iwamoto T, Kobayashi M, Uchiyama K, Sasaki S, Nagendran S, Isobe H, Kira M (2009) Anthryl-substituted trialkyldisilene showing distinct intramolecular charge-transfer transition. J Am Chem Soc 2009:3156–3157

    Article  Google Scholar 

  34. Iwamoto T, Ohnishi N, Akasaka N, Ohno K, Ishida S (2013) Anthryl-substituted 3-silylene-2-silaaziridine obtained by isomerization of disilacyclopropanimine: an exocyclic silene showing a distinct intramolecular charge transfer transition. J Am Chem Soc 135(29):10606–10609

    Article  CAS  Google Scholar 

  35. Kira M, Ishida S, Iwamoto T, Kabuto C (1999) The first isolable dialkylsilylene. J Am Chem Soc 121:9722–9723

    Article  CAS  Google Scholar 

  36. Shizuka H, Obuchi H, Ishikawa M, Kumada M (1984) Photochemical and photophysical behaviour of phenylsilanes and naphthylsilanes. J Chem Soc Faraday Trans 80:383–401

    Article  CAS  Google Scholar 

  37. Yokelson HB, Millevolte AJ, Haller KJ, West R (1987) The synthesis and molecular structure of a disilacyclpropanimine. J Chem Soc Chem Commun 23:1605–1606

    Article  Google Scholar 

  38. Majumdar M, Huch V, Bejan I, Meltzer A, Scheschkewitz D (2013) Reversible, complete cleavage of Si=Si double bonds by isocyanide insertion. Angew Chem Int Ed 52:3516–3520

    Article  CAS  Google Scholar 

  39. Brook AG, Kong YK, Saxena AK, Sawyer JF (1988) Silaaziridines from the reaction of isonitrile with stable silenes. Organometallics 7:2245–2247

    Article  CAS  Google Scholar 

  40. Brook AG, Saxena AK, Sawyer JF (1989) 1-Sila-3-azacyclobutanes: the insertion of isocyanides into silaaziridines. Organometallics 8:850–852

    Article  CAS  Google Scholar 

  41. Driess M, Pritzkow H (1993) A novel type of oligofunctional macroheterocycle by reaction of silylidene-phosphane and -arsanes with 1,6-diisocyanohexane. J Chem Soc, Chem Commun 29:1585–1587

    Google Scholar 

  42. Wiberg N, Wagner G, Müller G (1985) Isolation and structure of a stable molecule containing a silicon-carbon double bond. Angew Chem Int Ed Engl 24:229–230

    Article  Google Scholar 

  43. Reichardt C, Welton T (2011) Solvent and solvent effects in organic chemistry. Wiley-VCH, New York

    Google Scholar 

  44. Bendikov M, Kravchenko V, Apeloig Y, Becker JY (2004) The first electrochemical study of a silene. An unusually low oxidation potential, comparable to those of strong organic π-electron donors. Organometallics 23:921–923

    Article  CAS  Google Scholar 

  45. Ohno K, Maeda S (2004) A scaled hypersphere search method for the topography of reaction pathways on the potential energy surface. Chem Phys Lett 384:277–282

    Article  CAS  Google Scholar 

  46. Ohno K, Maeda S (2006) Global reaction route mapping on potential energy surfaces of formaldehyde, formic acid, and their metal substituted analogues. J Phys Chem A 110:8933–8941

    Article  CAS  Google Scholar 

  47. Maeda S, Ohno K (2007) Structures of water octamers (H2O)8: Exploration on ab initio potential energy surfaces by the scaled hypersphere search method. J Phys Chem A 111:4527–4534

    Article  CAS  Google Scholar 

  48. Eklöf AM, Guliashvili T, Ottosson H (2008) Relation between the π-contribution to reversed Si=C bond polarization and the reaction profile for the thermolytic formation of silenes. Organometallics 27:5203–5211

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeaki Iwamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Iwamoto, T. (2015). Doubly Bonded Silicon Compounds Showing Intramolecular Charge-Transfer Transitions. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_22

Download citation

Publish with us

Policies and ethics