Skip to main content

Can a High-Intensity Contraction Be Enhanced by a Conditioning Contraction? Insight from the Relationship Between Shortening Velocity of Muscle Fibers and Postactivation Potentiation

  • Chapter
Sports Performance
  • 2516 Accesses

Abstract

The magnitude of twitch torque increases after a high-intensity contraction of the same muscle (conditioning contraction). This phenomenon is called postactivation potentiation (PAP). Recently, it has been shown that the maximal voluntary concentric torque or power attained during the maximal voluntary concentric contraction can be increased by a conditioning contraction, suggesting that conditioning contractions are effective on not only twitch but also on maximal voluntary contractions. In contrast, some studies have reported that a conditioning contraction had no potentiation effect on subsequent electrically-evoked maximal isometric force. This discrepancy among previous studies may be attributable to differences in the mode of contraction (i.e., isometric, concentric or eccentric), which can affect the extent of PAP. Therefore, the main purpose of this study was to examine the influence of these aforementioned factors on the extent of PAP, and to discuss the applications of a conditioning contraction to high-intensity contractions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babault N, Maffiuletti NA, Pousson M (2008) Postactivation potentiation in human knee extensors during dynamic passive movements. Med Sci Sports Exerc 40:735–743

    Article  PubMed  Google Scholar 

  • Baudry S, Duchateau J (2007) Postactivation potentiation in a human muscle: effect on the load-velocity relation of tetanic and voluntary shortening contractions. J Appl Physiol 103:1318–1325

    Article  PubMed  Google Scholar 

  • Behm DG, Button DC, Barbour G, Butt JC, Young WB (2004) Conflicting effects of fatigue and potentiation on voluntary force. J Strength Cond Res 18:365–372

    PubMed  Google Scholar 

  • Clark BC, Taylor JL (2011) Age-related changes in motor cortical properties and voluntary activation of skeletal muscle. Curr Aging Sci 4:192–199

    Article  PubMed Central  PubMed  Google Scholar 

  • de Haan A (1998) The influence of stimulation frequency on force-velocity characteristics of in situ rat medial gastrocnemius muscle. Exp Physiol 83:77–84

    Article  PubMed  Google Scholar 

  • Enoka RM, Duchateau J (2008) Muscle fatigue: what, why and how it influences muscle function. J Physiol 586:11–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukashiro S, Itoh M, Ichinose Y, Kawakami Y, Fukunaga T (1995) Ultrasonography gives directly but noninvasively elastic characteristic of human tendon in vivo. Eur J Appl Physiol Occup Physiol 71:555–557

    Article  CAS  PubMed  Google Scholar 

  • Fukutani A, Miyamoto N, Kanehisa H, Yanai T, Kawakami Y (2012) Influence of the intensity of a conditioning contraction on the subsequent twitch torque and maximal voluntary concentric torque. J Electromyogr Kinesiol 22:560–565

    Article  PubMed  Google Scholar 

  • Galler S, Rathmayer W (1992) Shortening velocity and force/pCa relationship in skinned crab muscle fibres of different types. Pflugers Arch 420:187–193

    Article  CAS  PubMed  Google Scholar 

  • Gandevia SC, Enoka RM, McComas AJ, Stuart DG, Thomas CK (1995) Neurobiology of muscle fatigue. Advances and issues. Adv Exp Med Biol 384:515–525

    Article  CAS  PubMed  Google Scholar 

  • Grange RW, Vandenboom R, Houston ME (1993) Physiological significance of myosin phosphorylation in skeletal muscle. Can J Appl Physiol 18:229–242

    Article  CAS  PubMed  Google Scholar 

  • Harwood B, Davidson AW, Rice CL (2011) Motor unit discharge rates of the anconeus muscle during high-velocity elbow extensions. Exp Brain Res 208:103–113

    Article  CAS  PubMed  Google Scholar 

  • Hicks AL, Cupido CM, Martin J, Dent J (1991) Twitch potentiation during fatiguing exercise in the elderly: the effects of training. Eur J Appl Physiol Occup Physiol 63:278–281

    Article  CAS  PubMed  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B Biol Sci 126:136–195

    Article  Google Scholar 

  • Ichinose Y, Kawakami Y, Ito M, Kanehisa H, Fukunaga T (2000) In vivo estimation of contraction velocity of human vastus lateralis muscle during “isokinetic” action. J Appl Physiol 88:851–856

    CAS  PubMed  Google Scholar 

  • MacIntosh BR (2010) Cellular and whole muscle studies of activity dependent potentiation. Adv Exp Med Biol 682:315–342

    Article  CAS  PubMed  Google Scholar 

  • MacIntosh BR, Willis JC (2000) Force-frequency relationship and potentiation in mammalian skeletal muscle. J Appl Physiol 88:2088–2096

    CAS  PubMed  Google Scholar 

  • MacIntosh BR, Taub EC, Dormer GN, Tomaras EK (2008) Potentiation of isometric and isotonic contractions during high-frequency stimulation. Pflugers Arch 456:449–458

    Article  CAS  PubMed  Google Scholar 

  • MacIntosh BR, Robillard ME, Tomaras EK (2012) Should postactivation potentiation be the goal of your warm-up? Appl Physiol Nutr Metab 37:546–550

    Article  PubMed  Google Scholar 

  • Manning DR, Stull JT (1982) Myosin light chain phosphorylation-dephosphorylation in mammalian skeletal muscle. Am J Physiol 242:C234–C241

    CAS  PubMed  Google Scholar 

  • Miyamoto N, Kanehisa H, Fukunaga T, Kawakami Y (2011) Effect of postactivation potentiation on the maximal voluntary isokinetic concentric torque in humans. J Strength Cond Res 25:186–192

    Article  PubMed  Google Scholar 

  • Moore RL, Stull JT (1984) Myosin light chain phosphorylation in fast and slow skeletal muscles in situ. Am J Physiol 247:C462–C471

    CAS  PubMed  Google Scholar 

  • Mrówczyński W, Celichowski J, Krutki P (2006) Interspecies differences in the force-frequency relationship of the medial gastrocnemius motor units. J Physiol Pharmacol 57:491–501

    PubMed  Google Scholar 

  • Nairn AC, Perry SV (1979) Calmodulin and myosin light-chain kinase of rabbit fast skeletal muscle. Biochem J 179:89–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Persechini A, Stull JT, Cooke R (1985) The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibers. J Biol Chem 260:7951–7954

    CAS  PubMed  Google Scholar 

  • Piazzesi G, Reconditi M, Linari M, Lucii L, Bianco P, Brunello E, Decostre V, Stewart A, Gore DB, Irving TC, Irving M, Lombardi V (2007) Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size. Cell 131:784–795

    Article  CAS  PubMed  Google Scholar 

  • Rassier DE, Macintosh BR (2000) Coexistence of potentiation and fatigue in skeletal muscle. Braz J Med Biol Res 33:499–508

    Article  CAS  PubMed  Google Scholar 

  • Sale DG (2002) Postactivation potentiation: role in human performance. Exerc Sport Sci Rev 30:138–143

    Article  PubMed  Google Scholar 

  • Shima N, Rice CL, Ota Y, Yabe K (2006) The effect of postactivation potentiation on the mechanomyogram. Eur J Appl Physiol 96:17–23

    Article  PubMed  Google Scholar 

  • Stephenson DG, Williams DA (1981) Calcium-activated force responses in fast- and slow-twitch skinned muscle fibres of the rat at different temperatures. J Physiol 317:281–302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stuart DS, Lingley MD, Grange RW, Houston ME (1988) Myosin light chain phosphorylation and contractile performance of human skeletal muscle. Can J Physiol Pharmacol 66:49–54

    Article  CAS  PubMed  Google Scholar 

  • Sweeney HL, Bowman BF, Stull JT (1993) Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol 264:C1085–C1095

    CAS  PubMed  Google Scholar 

  • Thomas CK, Bigland-Richie B, Johansson RS (1991) Force-frequency relationships of human thenar motor units. J Neurophysiol 65:1509–1516

    CAS  PubMed  Google Scholar 

  • Tillin NA, Bishop D (2009) Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med 39:147–166

    Article  PubMed  Google Scholar 

  • Vandenboom R, Grange RW, Houston ME (1993) Threshold for force potentiation associated with skeletal myosin phosphorylation. Am J Physiol 265:C1456–C1462

    CAS  PubMed  Google Scholar 

  • Vandenboom R, Grange RW, Houston ME (1995) Myosin phosphorylation enhances rate of force development in fast-twitch skeletal muscle. Am J Physiol 268:C596–C603

    CAS  PubMed  Google Scholar 

  • Vandervoort AA, Quinlan J, McComas AJ (1983) Twitch potentiation after voluntary contraction. Exp Neurol 81:141–152

    Article  CAS  PubMed  Google Scholar 

  • Zhi G, Ryder JW, Huang J, Ding P, Chen Y, Zhao Y, Kamm KE, Stull JT (2005) Myosin light chain kinase and myosin phosphorylation effect frequency-dependent potentiation of skeletal muscle contraction. Proc Natl Acad Sci 102:17519–17524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuki Fukutani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Fukutani, A., Kawakami, Y. (2015). Can a High-Intensity Contraction Be Enhanced by a Conditioning Contraction? Insight from the Relationship Between Shortening Velocity of Muscle Fibers and Postactivation Potentiation. In: Kanosue, K., Nagami, T., Tsuchiya, J. (eds) Sports Performance. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55315-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55315-1_17

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55314-4

  • Online ISBN: 978-4-431-55315-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics