Skip to main content

Circadian and Circalunar Clock Interactions and the Impact of Light in Platynereis dumerilii

  • Chapter
  • First Online:
Annual, Lunar, and Tidal Clocks

Abstract

The marine annelid Platynereis dumerilii coordinates its life in accordance to the daily sun cycle but also with the monthly changes of the moon. These rhythms are driven by internal molecular oscillators, both entrained by light. Here we provide an overview of our current knowledge on both circadian and circalunar clocks of the worms, as well as their interactions on molecular and behavioral levels.

In addition, this chapter also presents new data on the impact of nocturnal light (simulating moonlight) on circadian clock gene expression and locomotor behavior. Consistent with work in other species, nocturnal illumination impacts on both. Circadian clock gene expression profiles of worms at “full moon” (FM, i.e., dim nocturnal light) become arrhythmic. Similarly, worms at “full moon” are equally active during day and night, in contrast to their predominant nocturnality during “new moon” (NM, i.e., dark nights between full moon phases) and “free-running full moon” phases (FR-FM, i.e., dark nights when full moon would be expected). Although circadian clock transcript kinetics are different between FM and FR-FM, the circalunar clock-controlled spawning peaks are indistinguishable. This difference further confirms that circalunar clock function is independent of circadian clock transcript oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann C, Dorresteijn A, Fischer A (2005) Clonal domains in postlarval Platynereis dumerilii (Annelida: Polychaeta). J Morphol 266:258–280. doi:10.1002/jmor.10375

    Article  PubMed  Google Scholar 

  • Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J (2004) Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306:869–871

    Article  CAS  PubMed  Google Scholar 

  • Bachleitner W, Kempinger L, Wulbeck C, Rieger D, Helfrich-Forster C (2007) Moonlight shifts the endogenous clock of Drosophila melanogaster. Proc Natl Acad Sci USA 104:3538–3543. doi:10.1073/pnas.0606870104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Backfisch B, Veedin Rajan VB, Fischer RM, Lohs C, Arboleda E, Tessmar-Raible K, Raible F (2013) Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution. Proc Natl Acad Sci USA 110:193–198. doi:10.1073/pnas.1209657109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Backfisch B, Kozin VV, Kirchmaier S, Tessmar-Raible K, Raible F (2014) Tools for gene-regulatory analyses in the marine annelid Platynereis dumerilii. PLoS One 9:e93076

    Article  PubMed Central  PubMed  Google Scholar 

  • Bannister S, Antonova O, Polo A, Lohs C, Hallay N, Valinciute A, Raible F, Tessmar-Raible K (2014) TALE nucleases mediate efficient, heritable genome modifications in the marine annelid Platynereis dumerilii. Genetics 197:77–89. doi:10.1534/genetics.113.161091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conzelmann M, Williams EA, Tunaru S, Randel N, Shahidi R, Asadulina A, Berger J, Offermanns S, Jekely G (2013) Conserved MIP receptor-ligand pair regulates Platynereis larval settlement. Proc Natl Acad Sci USA 110:8224–8229. doi:10.1073/pnas.1220285110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cyran SA, Buchsbaum AM, Reddy KL, Lin MC, Glossop NR, Hardin PE, Young MW, Storti RV, Blau J (2003) vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 112:329–341

    Article  CAS  PubMed  Google Scholar 

  • Denes AS, Jekely G, Steinmetz PR, Raible F, Snyman H, Prud’homme B, Ferrier DE, Balavoine G, Arendt D (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in Bilateria. Cell 129:277–288

    Article  CAS  PubMed  Google Scholar 

  • Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, Qin X, Xu Y, Pan M, Valekunja UK, Feeney KA, Maywood ES, Hastings MH, Baliga NS, Merrow M, Millar AJ, Johnson CH, Kyriacou CP, O’Neill JS, Reddy AB (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature (Lond) 485:459–464. doi:10.1038/nature11088

    CAS  Google Scholar 

  • Eide EJ, Woolf MF, Kang H, Woolf P, Hurst W, Camacho F, Vielhaber EL, Giovanni A, Virshup DM (2005) Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation. Mol Cell Biol 25:2795–2807. doi:10.1128/MCB.25.7.2795-2807.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fage L, Legendre R (1927) Peches planctoniques à la lumière effectuées à Banyuls-sur-mer et à Concarneau, I, Annelides Polychetes. Arch Zool Exp Gén Paris 67:23–222

    Google Scholar 

  • Fischer A, Dorresteijn AWC (2004) The polychaete Platynereis dumerilii (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic/pelagic life cycle. Bioessays 3:314–325

    Article  Google Scholar 

  • Fischer AH, Henrich T, Arendt D (2010) The normal development of Platynereis dumerilii (Nereididae, Annelida). Front Zool 7:31. doi:10.1186/1742-9994-7-31

    Article  PubMed Central  PubMed  Google Scholar 

  • Fox HM (1924) Lunar periodicity in reproduction. Proc R Soc Lond B 95(671):523–550

    Article  Google Scholar 

  • Franke H-D (1985) On a clocklike mechanism timing lunar-rhythmic reproduction in Typosyllis prolifera (Polychaeta). J Comp Physiol A 156:553–561

    Article  Google Scholar 

  • Franke H-D (1986) The role of light and endogenous factors in the timing of the reproductive cycle of Typosyllis prolifera and some other polychaetes. Am Zool 26:433–445

    Google Scholar 

  • Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284. doi:10.1038/nbt.2808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukushiro M, Takeuchi T, Takeuchi Y, Hur SP, Sugama N, Takemura A, Kubo Y, Okano K, Okano T (2011) Lunar phase-dependent expression of cryptochrome and a photoperiodic mechanism for lunar phase-recognition in a reef fish, goldlined spinefoot. PLoS One 6:e28643. doi:10.1371/journal.pone.0028643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gallego M, Virshup DM (2007) Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 8:139–148. doi:10.1038/nrm2106

    Article  CAS  PubMed  Google Scholar 

  • Hasse C, Rebscher N, Reiher W, Sobjinski K, Moerschel E, Beck L, Tessmar-Raible K, Arendt D, Hassel M (2010) Three consecutive generations of nephridia occur during development of Platynereis dumerilii (Annelida, Polychaeta). Dev Dyn 239:1967–1976. doi:10.1002/dvdy.22331

    Article  CAS  PubMed  Google Scholar 

  • Hauenschild C (1954) Über das lunarperiodische Schwärmen von Platynereis dumerilii in Laboratoriumszuchten. Naturwissenschaften 41:556–557

    Google Scholar 

  • Hauenschild C (1955) Photoperiodizität als Ursache des von der Mondphase abhangigen Metamorphose-Rhythmus bei dem Polychaeten Platynereis dumerilii. Z Naturforsch B 10:658–662

    Google Scholar 

  • Hauenschild C (1956) Neue experimentelle Untersuchungen zum Problem der Lunarperiodizität. Naturwissenschaften 43:361–363

    Article  Google Scholar 

  • Hauenschild C (1960) Lunar periodicity. Cold Spring Harbor Symp Quant Biol 25:491–497

    Article  CAS  PubMed  Google Scholar 

  • Hauenschild C, Fischer A (1969) Platynereis dumerilii. Mikroskopische Anatomie, Fortpflanzung, Entwicklung. Grosses Zool Prakt 10b:1–54

    Google Scholar 

  • Hunter-Ensor M, Ousley A, Sehgal A (1996) Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell 84:677–685

    Article  CAS  PubMed  Google Scholar 

  • Jekely G, Arendt D (2007) Cellular resolution expression profiling using confocal detection of NBT/BCIP precipitate by reflection microscopy. Biotechniques 42:751–755

    Article  CAS  PubMed  Google Scholar 

  • Jekely G, Colombelli J, Hausen H, Guy K, Stelzer E, Nedelec F, Arendt D (2008) Mechanism of phototaxis in marine zooplankton. Nature (Lond) 456:395–399

    Article  CAS  Google Scholar 

  • Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, Wesley CS, Young MW (1998) The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell 94:97–107

    Article  CAS  PubMed  Google Scholar 

  • Korringa P (1947) Relations between the moon and periodicity in the breeding of marine animals. Ecol Monogr 17:347–381

    Article  Google Scholar 

  • Lee H, Chen R, Lee Y, Yoo S, Lee C (2009) Essential roles of CKIdelta and CKIepsilon in the mammalian circadian clock. Proc Natl Acad Sci USA 106:21359–21364. doi:10.1073/pnas.0906651106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levy O, Appelbaum L, Leggat W, Gothlif Y, Hayward DC, Miller DJ, Hoegh-Guldberg O (2007) Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora. Science 318:467–470

    Article  CAS  PubMed  Google Scholar 

  • Mehra A, Baker CL, Loros JJ, Dunlap JC (2009) Post-translational modifications in circadian rhythms. Trends Biochem Sci 34:483–490. doi:10.1016/j.tibs.2009.06.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meng QJ, Logunova L, Maywood ES, Gallego M, Lebiecki J, Brown TM, Sladek M, Semikhodskii AS, Glossop NR, Piggins HD, Chesham JE, Bechtold DA, Yoo SH, Takahashi JS, Virshup DM, Boot-Handford RP, Hastings MH, Loudon AS (2008) Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58:78–88. doi:10.1016/j.neuron.2008.01.019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naylor E (2010) Chronobiology of marine organisms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • O’Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget FY, Reddy AB, Millar AJ (2011) Circadian rhythms persist without transcription in a eukaryote. Nature (Lond) 469:554–558. doi:10.1038/nature09654

    Article  Google Scholar 

  • Padmanabhan K, Robles MS, Westerling T, Weitz CJ (2012) Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science 337:599–602. doi:10.1126/science.1221592

    Article  CAS  PubMed  Google Scholar 

  • Palmer JD (1974) A potpourri of lunar-related rhythms. In: Palmer JD (ed) Biological clocks in marine organisms: the control of physiological and behavioral tidal rhythms. Wiley, New York, pp 105–123

    Google Scholar 

  • Palmer JD (2000) The clocks controlling the tide-associated rhythms of intertidal animals. Bioessays 22:32–37

    Article  CAS  PubMed  Google Scholar 

  • Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW (1998) double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94:83–95

    Article  CAS  PubMed  Google Scholar 

  • Raible F, Arendt D (2004) Metazoan evolution: some animals are more equal than others. Curr Biol 14:R106–R108

    Article  CAS  PubMed  Google Scholar 

  • Raible F, Tessmar-Raible K, Osoegawa K, Wincker P, Jubin C, Balavoine G, Ferrier D, Benes V, de Jong P, Weissenbach J, Bork P, Arendt D (2005) Vertebrate-type intron-rich genes in the marine annelid Platynereis dumerilii. Science 310:1325–1326

    Article  CAS  PubMed  Google Scholar 

  • Ranzi S (1931a) Maturita sessuale degli Anellidi e fasi lunari. Boll Soc Ital Biol Sperim 6:18

    Google Scholar 

  • Ranzi S (1931b) Ricerche sulla biologia sessuale degli Anellidi. Pubbl Staz Zool Napoli 11:271–292

    Google Scholar 

  • Rebscher N, Zelada-Gonzalez F, Banisch TU, Raible F, Arendt D (2007) Vasa unveils a common origin of germ cells and of somatic stem cells from the posterior growth zone in the polychaete Platynereis dumerilii. Dev Biol 306:599–611. doi:10.1016/j.ydbio.2007.03.521

    Article  CAS  PubMed  Google Scholar 

  • Schneider SQ, Bowerman B (2007) beta-Catenin asymmetries after all animal/vegetal-oriented cell divisions in Platynereis dumerilii embryos mediate binary cell-fate specification. Dev Cell 13:73–86. doi:10.1016/j.devcel.2007.05.002

    Article  CAS  PubMed  Google Scholar 

  • Simakov O, Larsson TA, Arendt D (2013) Linking micro- and macro-evolution at the cell type level: a view from the lophotrochozoan Platynereis dumerilii. Brief Funct Genomics 12:430–439. doi:10.1093/bfgp/els049

    Article  PubMed  Google Scholar 

  • Steinmetz PR, Zelada-Gonzales F, Burgtorf C, Wittbrodt J, Arendt D (2007) Polychaete trunk neuroectoderm converges and extends by mediolateral cell intercalation. Proc Natl Acad Sci USA 104:2727–2732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sugama N, Park JG, Park YJ, Takeuchi Y, Kim SJ, Takemura A (2008) Moonlight affects nocturnal Period2 transcript levels in the pineal gland of the reef fish Siganus guttatus. J Pineal Res 45:133–141

    Article  CAS  PubMed  Google Scholar 

  • Tessmar-Raible K, Arendt D (2003) Emerging systems: between vertebrates and arthropods, the Lophotrochozoa. Curr Opin Genet Dev 13:331–340

    Article  CAS  PubMed  Google Scholar 

  • Tessmar-Raible K, Steinmetz PR, Snyman H, Hassel M, Arendt D (2005) Fluorescent two-color whole mount in situ hybridization in Platynereis dumerilii (Polychaeta, Annelida), an emerging marine molecular model for evolution and development. Biotechniques 39:460, 462, 464

    Google Scholar 

  • Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, Arendt D (2007) Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 129:1389–1400

    Article  CAS  PubMed  Google Scholar 

  • Tessmar-Raible K, Raible F, Arboleda E (2011) Another place, another timer: marine species and the rhythms of life. Bioessays 33:165–172

    Article  PubMed Central  PubMed  Google Scholar 

  • Tomer R, Denes AS, Tessmar-Raible K, Arendt D (2010) Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 142:800–809. doi:10.1016/j.cell.2010.07.043

    Article  CAS  PubMed  Google Scholar 

  • Vanin S, Bhutani S, Montelli S, Menegazzi P, Green EW, Pegoraro M, Sandrelli F, Costa R, Kyriacou CP (2012) Unexpected features of Drosophila circadian behavioural rhythms under natural conditions. Nature (Lond) 484:371–375. doi:10.1038/nature10991

    Article  CAS  Google Scholar 

  • Vanselow K, Vanselow JT, Westermark PO, Reischl S, Maier B, Korte T, Herrmann A, Herzel H, Schlosser A, Kramer A (2006) Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev 20:2660–2672. doi:10.1101/gad.397006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Veedin Rajan VB, Fischer RM, Raible F, Tessmar-Raible K (2013) Conditional and specific cell ablation in the marine annelid Platynereis dumerilii. PLoS One 8:e75811. doi:10.1371/journal.pone.0075811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walton KM, Fisher K, Rubitski D, Marconi M, Meng QJ, Sladek M, Adams J, Bass M, Chandrasekaran R, Butler T, Griffor M, Rajamohan F, Serpa M, Chen Y, Claffey M, Hastings M, Loudon A, Maywood E, Ohren J, Doran A, Wager TT (2009) Selective inhibition of casein kinase 1 epsilon minimally alters circadian clock period. J Pharmacol Exp Ther 330:430–439. doi:10.1124/jpet.109.151415

    Article  CAS  PubMed  Google Scholar 

  • Zantke J, Ishikawa-Fujiwara T, Arboleda E, Lohs C, Schipany K, Hallay N, Straw A, Todo T, Tessmar-Raible K (2013) Circadian and circalunar clock interactions in a marine annelid. Cell Rep 5:99–113. doi:10.1016/j.celrep.2013.08.031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zantke J, Bannister S, Veedin Rajan VB, Raible F, Tessmar-Raible K (2014) Genetic and genomic tools for the marine annelid Platynereis dumerilii. Genetics 197:19–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin Tessmar-Raible .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Zantke, J., Oberlerchner, H., Tessmar-Raible, K. (2014). Circadian and Circalunar Clock Interactions and the Impact of Light in Platynereis dumerilii . In: Numata, H., Helm, B. (eds) Annual, Lunar, and Tidal Clocks. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55261-1_8

Download citation

Publish with us

Policies and ethics