Skip to main content

The Circannual Clock in the European Hamster: How Is It Synchronized by Photoperiodic Changes?

  • Chapter
  • First Online:
Annual, Lunar, and Tidal Clocks

Abstract

In a seasonal environment, mammals time their reproductive phase so that the offspring are born in spring and summer. Two strategies have evolved to ensure accurate seasonal timing of reproduction, but both share a common Zeitgeber, the seasonal changes in photoperiod. The reproductive axis might be directly controlled, as in photoperiodic species, which require photoperiodic input to show seasonal changes in reproductive competence. In contrast, in circannual species photoperiodic changes act indirectly, namely, on an endogenous circannual clock that then times reproduction. This circannual clock generates self-sustained rhythms with a period length of about 1 year, and photoperiodic information is only needed to synchronize these rhythms. Concerning the mechanism that imparts the photoperiodic message internally, so far no differences between photoperiodic and circannual mammals have been reported. Recent results however, strongly suggest that the circannual European hamster (Cricetus cricetus) uses a fundamentally different mechanism than photoperiodic species. In the latter, photoperiod induces a change in the reproductive state via a melatonin-dependent pathway, whereas the circannual clock of the European hamsters can be synchronized via a melatonin-independent pathway. Instead, a circadian mechanism based on a specific organizational state is involved. Juvenile European hamsters use probably both pathways: the melatonin-dependent photoperiodic pathway for the short-term timing in the year of birth and the melatonin-independent circannual pathway for long-term timing of the seasonal events in the next year.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert M (2013) Erfassung des Reproduktionserfolges des Feldhamsters (Cricetus cricetus) in Hessen [Reproductive success of female Common hamster (Cricetus cricetus) in Hesse]. Abteilung Fließgewässerökologie und Naturschutzforschung, Fachgebiet Naturschutzgenetik, Forschungsinstitut Senckenberg

    Google Scholar 

  • Arnold W, Ruf T, Reimoser S, Tataruch F, Onderscheka K, Schober F (2004) Nocturnal hypometabolism as an overwintering strategy of red deer (Cervus elaphus). Am J Physiol Regul Integr Comp Physiol 286:R174–R181

    CAS  PubMed  Google Scholar 

  • Arnold W, Ruf T, Frey-Roos F, Bruns U (2011) Diet-independent remodeling of cellular membranes precedes seasonally changing body temperature in a hibernator. PLoS One 6:e18641

    CAS  PubMed Central  PubMed  Google Scholar 

  • Asa CS, Seal US, Letellier M, Plotka ED, Peterson EK (1987) Pinealectomy or superior cervical ganglionectomy do not alter reproduction in the wolf (Canis lupus). Biol Reprod 37:14–21

    CAS  PubMed  Google Scholar 

  • Banaszek A, Jadwiszczak KA, Ratkiewicz M, Ziomek J (2009) Low genetic diversity and significant structuring of the common hamster populations Cricetus cricetus in Poland revealed by the mtDNA control region sequence variation. Acta Theriol 54:289–295

    Google Scholar 

  • Barnes BM, York AD (1990) Effect of winter high temperatures on reproduction and circannual rhythms in hibernating ground squirrels. J Biol Rhythms 5:119–130

    CAS  PubMed  Google Scholar 

  • Bartness TJ, Goldman BD (1989) Mammalian pineal melatonin: a clock for all seasons. Experientia (Basel) 45:939–945

    CAS  Google Scholar 

  • Beersma DGM, Daan S, Hut RA (1999) Accuracy of circadian entrainment under fluctuating light conditions: contributions of phase and period responses. J Biol Rhythms 14:320–329

    CAS  PubMed  Google Scholar 

  • Bekenov AB (1998) Ecology of common hamster (Cricetus cricetus L., 1758) in Kazakhstan. In: Stubbe M, Stubbe A (eds) Ecology and protection of the common hamster. Martin-Luther-Universität Halle-Wittenberg, Halle/Saale, pp 81–86

    Google Scholar 

  • Bittman EL, Dempsey RJ, Karsch FJ (1983) Pineal melatonin secretion drives the reproductive response to daylength in the ewe. Endocrinology 113:2276–2283

    CAS  PubMed  Google Scholar 

  • Bloch R, Canguilhem B (1966) Cycle saisonnier d’elimination urinaire de l’aldostérone chez un hibernant, Cricetus cricetus. Influence de la température [Seasonal cycle of urinary elimination of aldosterone in a hibernant, Cricetus cricetus. Influence of temperature]. C R Soc Biol 160:1500–1503

    CAS  Google Scholar 

  • Bloch G, Barnes BM, Gerkema MP, Helm B (2013) Animal activity around the clock with no overt circadian rhythms: patterns, mechanisms and adaptive value. Proc R Soc B 280:20130019

    PubMed Central  PubMed  Google Scholar 

  • Boissin J, Canguilhem B (1988) Les rythmes circannuels chez les mammifères [Circannual rhythms in mammals]. Arch Int Physiol Biochim 96:A289–A345

    CAS  PubMed  Google Scholar 

  • Brandes K, Fend F, Monecke S, Teifke JP, Breuer W, Hermanns W (2004) Comparative morphologic and immunohistochemical investigation of spontaneously occurring thymomas in a colony of European hamsters. Vet Pathol 41:346–352

    CAS  PubMed  Google Scholar 

  • Buijs RM, Pévet P, Masson-Pévet M, Pool CW, deVries GJ, Canguilhem B, Vivien-Roels B (1986) Seasonal variation in vasopressin innervation in the brain of the European hamster (Cricetus cricetus). Brain Res 371:193–196

    CAS  PubMed  Google Scholar 

  • Canguilhem B (1985) Rythmes circannuels chez les mammifères hibernants sauvages [Circannual rhythms in wild hibernating mammals]. Can J Zool 63:453–463

    Google Scholar 

  • Canguilhem B, Bloch R (1966) Évolution saisonnière de l’elimination des hormones surrénaliennes chez un hibernant, Cricetus cricetus [Seasonal development in the excretion of adrenal hormones in a hibernating animal, Cricetus cricetus]. C R Séances Soc Biol Fil [Arch Sci Physiol (Paris)] 21:27–44

    Google Scholar 

  • Canguilhem B, Petrovic A (1974) Effets de la photopériode et de la température ambiante sur les rythmes circannuels du poids et de la cortico-surrénale du hamster d’Europe (Cricetus cricetus) [Effects of photoperiod and ambient temperature on circannual rhythms of body weight and adrenal cortex activity in European hamster (Cricetus cricetus)]. Arch Sci Physiol 28:113–126

    CAS  Google Scholar 

  • Canguilhem B, Schieber JP, Koch A (1973) Rythme circannuel pondéral du hamster d’Europe (Cricetus cricetus). Influences respectives de la photopériode et de la température externe sur son déroulement [Circannual weight rhythm of the European hamster (Cricetus cricetus). Respective influence of the photoperiod and external temperature during its course]. Arch Sci Physiol 27:67–90

    CAS  Google Scholar 

  • Canguilhem B, Schmitt P, Mack G, Kempf E (1977) Comportement alimentaire, rythmes circannuels ponderal et d’hibernation chez le hamster d’Europe porteur de lesions des faisceaux noradrenergiques ascendants [Feeding behavior, circannual body weight and hibernation rhythms in European hamsters lesioned in the noradrenergic ascending bundles]. Physiol Behav 18:1067–1074

    CAS  PubMed  Google Scholar 

  • Canguilhem B, Vivien-Roels B, Demeneix B, Miro JL, Masson-Pévet M, Pévet P (1986) Seasonal and endogenous variations of plasma testosterone (T), thyroxine (T4) and triiodothyronine (T3) in the European hamster. In: Assenmacher I, Boissin J (eds) Endocrine regulations as adaptive mechanisms to the environment. CNRS, Bordeaux, pp 291–295

    Google Scholar 

  • Canguilhem B, Vaultier J-P, Pévet P, Coumaros G, Masson-Pévet M, Bentz I (1988) Photoperiodic regulation of body mass, food intake, hibernation, and reproduction in intact and castrated male European hamsters, Cricetus cricetus. J Comp Physiol A 163:549–557

    CAS  PubMed  Google Scholar 

  • Canguilhem B, Masson-Pévet M, Pévet P, Bentz I (1992) Endogenous, photoperiodic and hormonal control of the body weight rhythm in the female European hamster, Cricetus cricetus. Comp Biochem Physiol 101:465–470

    CAS  Google Scholar 

  • Canguilhem B, Malan A, Masson-Pévet M, Nobelis P, Kirsch R, Pévet P, Le Minor J (1994) Search for rhythmicity during hibernation in the European hamster. J Comp Physiol B 163:690–698

    CAS  PubMed  Google Scholar 

  • Ciesielski L, Miro JL, Lorentz JG, Canguilhem B, Mandel P (1985) Circannual variations of GABA content in cytosolic and crude synaptosomal fractions in some brain areas of the European hamster. Brain Res 344:146–149

    CAS  PubMed  Google Scholar 

  • Daan S, Aschoff J (1975) Circadian rhythms of locomotor activity in captive birds and mammals: their variations with season and latitude. Oecologia (Berl) 18:269–316

    Google Scholar 

  • Dardente H, Klosen P, Pevet P, Masson-Pevet M (2003) MT1 melatonin receptor mRNA expressing cells in the pars tuberalis of the European hamster: effect of photoperiod. J Neuroendocrinol 15:778–786

    CAS  PubMed  Google Scholar 

  • Duston J, Bromage N (1988) The entrainment and gating of the endogenous circannual rhythm of reproduction in the female rainbow trout (Salmo gairdneri). J Comp Physiol A 164:259–268

    Google Scholar 

  • Duval-Erny A, Kayser C (1964) Bilans calciques saisonniers chez un hibernant, le hamster d’Europe (Cricetus cricetus) [Seasonal calcium balances in a hibernator, the European hamster (Cricetus cricetus)]. C R Séances Soc Biol Fil 158:1945–1947

    CAS  PubMed  Google Scholar 

  • Elliott JA, Stetson MH, Menaker M (1972) Regulation of testis function in golden hamsters: a circadian clock measures photoperiodic time. Science 178:771–773

    CAS  PubMed  Google Scholar 

  • Ernst H, Kunstyr I, Rittinghausen S, Mohr U (1989) Spontaneous tumours of the European hamster (Cricetus cricetus L.). Z Versuchstierkd 32:87–96

    CAS  PubMed  Google Scholar 

  • Everts LG, Strijkstra AM, Hut RA, Hoffmann IE, Millesi E (2004) Seasonal variation in daily activity patterns of free-ranging European ground squirrels (Spermophilus citellus). Chronobiol Int 21:57–71

    PubMed  Google Scholar 

  • Franceschini C, Millesi E (2004) Reproductive timing and success in common hamsters. In: Losinger I (ed) 12th meeting of the international hamster workgroup. ONCFS, Strasbourg, pp 63–66

    Google Scholar 

  • Franceschini C, Siutz C, Palme R, Millesi E (2007) Seasonal changes in cortisol and progesterone secretion in common hamsters. Gen Comp Endocrinol 152:14–21

    CAS  PubMed  Google Scholar 

  • Franceschini-Zink C, Millesi E (2008) Reproductive performance in female common hamsters. Zoology 111:76–83

    PubMed  Google Scholar 

  • Freeman DA, Zucker I (2000) Temperature-independence of circannual variations in circadian rhythms of golden-mantled ground squirrels. J Biol Rhythms 15:336–343

    CAS  PubMed  Google Scholar 

  • Garidou ML, Vivien-Roels B, Pevet P, Miguez J, Simonneaux V (2003) Mechanisms regulating the marked seasonal variation in melatonin synthesis in the European hamster pineal gland. Am J Physiol Regul Integr Comp Physiol 284:R1043–R1052

    CAS  PubMed  Google Scholar 

  • Gaston S, Menaker M (1967) Photoperiodic control of hamster testis. Science 158:925–928

    CAS  PubMed  Google Scholar 

  • Gattermann R (1985) Zur Biorhythmik des Goldhamsters (Mesocricetus auratus Waterhouse 1839). IV. Annuale Rhythmen [On the biorhythm of the Syrian hamster (Mesocricetus auratus Waterhouse 1839). IV. Annual rhythms]. Zool Jahrb Physiol 89:279–285

    Google Scholar 

  • Geiser F, Turbill C (2009) Hibernation and daily torpor minimize mammalian extinctions. Naturwissenschaften 96:1235–1240

    CAS  PubMed  Google Scholar 

  • Georgii B (1981) Activity patterns of female red deer (Cervus elaphus L.) in the Alps. Oecologia (Berl) 49:127–136

    Google Scholar 

  • Georgii B, Schröder W (1983) Home range and activity patterns of male red deer (Cervus elaphus L.) in the Alps. Oecologia (Berl) 58:238–248

    Google Scholar 

  • Ghadially FN, Illman O (1965) Naturally occurring thymomas in the European hamster. J Pathol Bacteriol 90:465–469

    CAS  PubMed  Google Scholar 

  • Goldman BD (2001) Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J Biol Rhythms 16:283–301

    CAS  PubMed  Google Scholar 

  • Górecki A, Grygielska M (1975) Consumption and utilization of natural foods by the common hamster. Acta Theriol 20:237–246

    Google Scholar 

  • Gorman MR, Goldman BD, Zucker I (2001) Mammalian photoperiodism. In: Takahashi JS, Turek FW, Moore RY (eds) Handbook of behavioral neurobiology: circadian clocks. Kluwer Academic/Plenum, New York, pp 481–508

    Google Scholar 

  • Goymann W, Helm B, Jensen W, Schwabl I, Moore IT (2012) A tropical bird can use the equatorial change in sunrise and sunset times to synchronize its circannual clock. Proc R Soc B 279:3527–3534

    PubMed Central  PubMed  Google Scholar 

  • Gwinner E (1986) Circannual rhythms. Springer-Verlag, Berlin

    Google Scholar 

  • Hanon EA, Routledge K, Dardente H, Masson-Pévet M, Morgan PJ, Hazlerigg DG (2010) Effect of photoperiod on the thyroid-stimulating hormone neuroendocrine system in the European hamster (Cricetus cricetus). J Neuroendocrinol 22:51–55

    CAS  PubMed  Google Scholar 

  • Harberey P, Canguilhem B, Kayser C (1967) Evolution saisonnière de l’élimination urinaire du sodium et du potassium chez le Hamster d’Europe (Cricetus cricetus) [Seasonal variations of sodium and potassium excretion in the European hamster (Cricetus cricetus)]. C R Séances Soc Biol Fil 161:2044–2049

    Google Scholar 

  • Hiebert SM, Thomas EM, Lee TM, Pelz KM, Yellon SM, Zucker I (2000) Photic entrainment of circannual rhythms in golden-mantled ground squirrels: role of the pineal gland. J Biol Rhythms 15:126–134

    CAS  PubMed  Google Scholar 

  • Hildebrand JC (1769) Wahrnehmungen von den Hamstern und deren ohne Fäulniß und Lebensgefahr einige Monate hindurch dauernden Ohnmacht oder Schlafsucht [Observations of the hamsters and their without rottenness and life-threatening some months lasting unconsciousness or somnolence]. Neues Hamburgisches Magazin 5:87–96

    Google Scholar 

  • Hilfrich J, Züchner H, Reznik-Schüller R (1977) Studies of the ovaries of hibernating and non-hibernating European hamsters (Cricetus cricetus). Z Versuchstierkd 19:304–308

    CAS  PubMed  Google Scholar 

  • Hoffmann K (1982) The critical photoperiod in the Djungarian hamster Phodopus sungorus. In: Aschoff J, Daan S, Groos GA (eds) Vertebrate circadian systems. Springer-Verlag, Berlin, pp 297–304

    Google Scholar 

  • Hoogenboom I, Daan S, Dallingia JH, Schoenmakers M (1984) Seasonal change in the daily timing of behaviour of the common vole, Microtus arvalis. Oecologia (Berl) 61:18–31

    Google Scholar 

  • Horton TH, Stetson MH (1992) Maternal transfer of photoperiodic information in rodents. Anim Reprod Sci 30:29–44

    Google Scholar 

  • Hufnagl S, Franceschini-Zink C, Millesi E (2011) Seasonal constraints and reproductive performance in female common hamsters (Cricetus cricetus). Mamm Biol 76:124–128

    Google Scholar 

  • Hut RA, Van Oort BEH, Daan S (1999) Natural entrainment without dawn and dusk: the case of the European ground squirrel (Spermophilus citellus). J Biol Rhythms 14:290–299

    CAS  PubMed  Google Scholar 

  • Illnerová H, Hoffmann K, Vanecek J (1984) Adjustment of pineal melatonin and N-acetyltransferase rhythms to change from long to short photoperiod in the Djungarian hamster Phodopus sungorus. Neuroendocrinology 38:226–231

    PubMed  Google Scholar 

  • Isaac JL (2009) Effects of climate change on life history: implications for extinction risk in mammals. Endang Species Res 7:115–123

    Google Scholar 

  • Jallageas M, Mas N, Saboureau M, Roussel JP, Lacroix A (1993) Effects of bilateral superior cervical ganglionectomy on thyroid and gonadal functions in the edible dormouse Glis glis. Comp Biochem Physiol 104:299–304

    CAS  Google Scholar 

  • Johnson CH (1999) Forty years of PRCs: what have we learned? Chronobiol Int 16:711–743

    CAS  PubMed  Google Scholar 

  • Johnson CH, Elliott JA, Foster RG, Homna KI, Kronauer R (2004) Fundamental properties of circadian rhythms. In: Dunlap JC, Loros JJ, DeCoursey PJ (eds) Chronobiology: biological timekeeping. Sinauer Associates, Sunderland, pp 67–103

    Google Scholar 

  • Johnston PG, Boshes M, Zucker I (1982) Photoperiodic inhibition of testicular development is mediated by the pineal gland in white-footed mice. Biol Reprod 26:597–602

    CAS  PubMed  Google Scholar 

  • Karaseva EV (1962) A study of the pecularities of territory utilization by the hamster in the Altai territory carried out with the use of labelling. Zool Zh 41:275–285

    Google Scholar 

  • Kayser A, Stubbe M, Weinhold U (2003) Mortality factors of the common hamster Cricetus cricetus at two sites in Germany. Acta Theriol 48:47–57

    Google Scholar 

  • Kayser C (1964) La dépense d’ènergie des mammifères en hibernation [The energy expenditure of mammals during hibernation]. Arch Sci Physiol 18:137–150

    CAS  Google Scholar 

  • Kayser C (1971) La dépense d’énergie des hibernants au cours du cycle circannien [Energy expenditure in hibernating animals during the circanual cycle]. C R Séances Soc Biol Fil 165:1145–1147

    CAS  PubMed  Google Scholar 

  • Kayser C, Aron M (1938) Cycle d’activité saisonnière des glandes endocrines chez un hibernant, le hamster (Cricetus frumentarius) [Cycle of seasonal activity in the endocrine glands of a hibernator (Cricetus frumentarius)]. C R Séances Soc Biol Fil 129:225–226

    Google Scholar 

  • Kayser C, Aron M (1950) Le cycle saisonnier des glandes endocrines chez les hibernants [Seasonal cycles of enocrine glands in hibernators]. Arch Anat Histol Embriol 33:21–42

    CAS  Google Scholar 

  • Kayser C, Frank RM (1963) Comportement des tissus calcifies du hamster d’Europe Cricetus cricetus au cours de l’hibernation [Behavior of calcified tissues of the European hamster Cricetus cricetus in the course of hibernation]. Arch Oral Biol 8:703–713

    CAS  PubMed  Google Scholar 

  • Kayser C, Haug AM (1969) Evolution saisonnière des bilans calciques chez un hibernant, le Hamster d’Europe (Cricetus cricetus) [Seasonal development of calcium balance in a hibernator, the European hamster (Cricetus cricetus)]. C R Séances Soc Biol Fil 162:1834–1837

    CAS  PubMed  Google Scholar 

  • Kayser C, Schwartz J (1960) Evolution saisonnière de l’élimination urinaire des 17-cétostéroides et des stéroides formadéhydogéniques chez le Hamster ordinaire (Cricetus cricetus) [Seasonal evolution of the urinary elimination of 17-ketosteroids and formaldehydrogenic steroids in the hamster (Cricetus cricetus)]. C R Séances Soc Biol Fil 154:778–780

    CAS  Google Scholar 

  • Kayser C, Petrovic A, Porte A (1961) Variations ultrastructurales de la parathyroide du Hamster ordinaire (Cricetus cricetus) au cours du cycle saisonnier [Ultrastructural variations of the parathyroid of the Common hamster (Cricetus cricetus)]. C R Séances Soc Biol Fil 155:2178–2181

    Google Scholar 

  • Kempf E, Mack G, Canguilhem B, Mandel P (1978) Seasonal changes in the levels and the turnover of brain serotonin and noradrenalin in the European hamster kept under constant environment. Experientia (Basel) 34:1032–1033

    CAS  Google Scholar 

  • Kirn N (2004) Ontogenese des Europäischen Feldhamsters (Cricetus cricetus) unter dem Einfluß verschiedener prä- und postnataler Photoperioden [Ontogeny in the European hamster (Cricetus cricetus) in different pre- and postnatal photoperiods]. Inaugural dissertation. Institut of Zoology, University of Veterinary Medicine, Hannover

    Google Scholar 

  • Kowalczyk R, Jędrzejewska B, Zalewski A (2003) Annual and circadian activity patterns of badgers (Meles meles) in Białowieża Primeval Forest (eastern Poland) compared with other palaearctic populations. J Biogeogr 30:463–472

    Google Scholar 

  • Krsmanovic L, Mikes M, Habijan V, Mikes B (1984) Reproductive activity of Cricetus cricetus L. in Vojvodina-Yugoslavia. Acta Zool Fenn 171:173–174

    Google Scholar 

  • La Haye MJJ, Neumann K, Koelewijn HP (2012) Strong decline of gene diversity in local populations of the highly endangered common hamster (Cricetus cricetus) in the western part of its European range. Conserv Gen 13:311–322

    Google Scholar 

  • Lee TM, Zucker I (1995) Seasonal variations in circadian rhythms persist in gonadectomized golden-mantled ground squirrels. J Biol Rhythms 10:188–195

    CAS  PubMed  Google Scholar 

  • Lee TM, Carmichael MS, Zucker I (1986) Circannual variations in circadian rhythms of ground squirrels. Am J Physiol 250:R831–R836

    CAS  PubMed  Google Scholar 

  • Lincoln GA, Libre EA, Merriam GR (1989) Long-term reproductive cycles in rams after pinealectomy or superior cervical ganglionectomy. J Reprod Fertil 85:687–704

    CAS  PubMed  Google Scholar 

  • Lincoln GA, Clarke IJ, Hut RA, Hazlerigg DG (2006) Characterizing a mammalian circannual pacemaker. Science 314:1941–1944

    CAS  PubMed  Google Scholar 

  • Martinet L, Allain D (1985) Role of the pineal gland in the photoperiodic control of reproductive and non-reproductive functions in mink (Mustela vison). In: Evered D, Clark S (eds) Photoperiodism, melatonin and the pineal. Ciba Foundation Symposium, vol 17. Bath Press, Avon, pp 170–187

    Google Scholar 

  • Masson-Pévet M, Gauer F (1994) Seasonality and melatonin receptors in the pars tuberalis in some long day breeders. Biol Signals 3:63–70

    PubMed  Google Scholar 

  • Masson-Pévet M, Pévet P, Vivien-Roels B (1987) Pinealectomy and constant release of melatonin or 5-methoxytryptamine induce testicular atrophy in the European hamster (Cricetus cricetus L.). J Pineal Res 4:79–88

    PubMed  Google Scholar 

  • Masson-Pévet M, Naimi F, Canguilhem B, Saboureau M, Bonn D, Pévet P (1994) Are the annual reproductive and body weight rhythms in the male European hamster (Cricetus cricetus) dependent upon a photoperiodically entrained circannual clock? J Pineal Res 17:151–163

    PubMed  Google Scholar 

  • Millesi E, Lebl K, Pflaum C, Franceschini C (2004) Reproductive effort in male common hamsters. In: Losinger I (ed) 12th meeting of the international hamster workgroup. ONCFS, Strasbourg, pp 67–69

    Google Scholar 

  • Miro JL, Canguilhem B, Schmitt P (1980) Effects of bulbectomy on hibernation, food intake and body weight in the European hamster, Cricetus cricetus. Physiol Behav 24:859–862

    CAS  PubMed  Google Scholar 

  • Miyazaki Y, Nisimura T, Numata H (2005) A phase response curve for circannual rhythm in the varied carpet beetle Anthrenus verbasci. J Comp Physiol A 191:883–887

    CAS  Google Scholar 

  • Miyazaki Y, Nisimura T, Numata H (2006) Phase responses in the circannual rhythm of the varied carpet beetle, Anthrenus verbasci, under naturally changing day length. Zool Sci 23:1031–1037

    PubMed  Google Scholar 

  • Miyazaki Y, Nisimura T, Numata H (2007) Phase resetting and phase singularity of an insect circannual oscillator. J Comp Physiol A 193:1169–1176

    Google Scholar 

  • Mletzko I, Raths P (1972) Temperaturadaptation und Stoffwechselrhythmik beim Hamster (Cricetus cricetus L.) [Temperature adaptations and metabolic rhythm in the hamster (Cricetus cricetus L.)]. Zool Jahrb Physiol 76:531–553

    Google Scholar 

  • Møller M, Masson-Pevet M, Pevet P (1998) Annual variations of the NPYergic innervation of the pineal gland in the European hamster (Cricetus cricetus): a quantitative immunohistochemical study. Cell Tissue Res 291:423–431

    PubMed  Google Scholar 

  • Monecke S (2013) All things considered? Alternative reasons for hamster extinction. Zool Pol 58:41–47

    Google Scholar 

  • Monecke S, Wollnik F (2004) European hamsters (Cricetus cricetus) show a transient phase of insensitivity to long photoperiods after gonadal regression. Biol Reprod 70:1438–1443

    CAS  PubMed  Google Scholar 

  • Monecke S, Wollnik F (2005) Seasonal variations in circadian rhythms coincide with a phase of sensitivity to short photoperiods in the European hamster. J Comp Physiol B 175:167–183

    PubMed  Google Scholar 

  • Monecke S, Wollnik F (2008) How to increase the reproductive success in European hamsters: shiftwork in the breeding colony. In: Millesi E, Winkler H, Hengsberger R (eds) 13th meeting of the international hamster workgroup (2005). The common hamster (Cricetus cricetus): perspectives on an endangered species. Austrian Academy of Sciences Press, Illmitz/Vienna, pp 97–114

    Google Scholar 

  • Monecke S, Malan A, Wollnik F (2006) Asymmetric control of short day response in European hamsters. J Biol Rhythms 21:290–300

    PubMed  Google Scholar 

  • Monecke S, Saboureau M, Malan A, Bonn D, Masson-Pévet M, Pévet P (2009) Circannual phase response curves to short and long photoperiod in the European hamster. J Biol Rhythms 24:413–426

    PubMed  Google Scholar 

  • Monecke S, Malan A, Saboureau M, Pévet P (2010) Phase shift of the circannual reproductive rhythm in European hamsters by 2 days of long photoperiod. Neuroendocrinol Lett 31:738–742

    PubMed  Google Scholar 

  • Monecke S, Bonn D, Reibel-Foisset S, Pévet P (2011a) Breeding success in aged female common hamsters (Cricetus cricetus). Säugetierkd Inf 8:121–129

    Google Scholar 

  • Monecke S, Malan A, Pévet P (2011b) Longterm temperature recordings in European hamsters. In: Monecke S, Pévet P (eds) 18th meeting of the International Hamster Workgroup (2011). From fundamental research to population management: refining conservation strategies for the European hamster [Cricetus cricetus L.]. INCI-CNRS, Strasbourg, pp 17–19

    Google Scholar 

  • Monecke S, Sage-Ciocca D, Wollnik F, Pévet P (2013) Photoperiod can entrain circannual rhythms in pinealectomized European hamsters. J Biol Rhythms 28:278–290

    PubMed  Google Scholar 

  • Monecke S, Amann B, Lemuth K, Wollnik F (2014) Dual control of seasonal time keeping in male and female juvenile European hamsters. Physiol Behav 130:66–74

    CAS  PubMed  Google Scholar 

  • Morano I, Adler K, Agostini B, Hasselbach W (1992) Expression of myosin heavy and light chains and phosphorylation of the phosphorylatable myosin light chain in the heart ventricle of the European hamster during hibernation and in summer. J Muscle Res Cell Motil 13:64–70

    CAS  PubMed  Google Scholar 

  • Mrosovsky N (1985) Thermal effetcs on the periodicity, phasing, and persistence of circannual cycles. In: Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold: physiological and biochemical adaptations. Proceedings of the 7th international symposium on natural mammalian hibernation 1985. Elsevier, Fallen Leaf Lake, CA, pp 403–410

    Google Scholar 

  • Nechay G (2000) Status of hamsters Cricetus cricetus, Cricetus migratorius, Mesocricetus newtoni and other hamster species in Europe. Council of Europe, Strasbourg Cedex

    Google Scholar 

  • Nechay G, Hamar M, Grulich L (1977) The common hamster (Cricetus cricetus [L.]); a review. EPPO Bull 7:255–276

    Google Scholar 

  • Neumann K, Kayser A, Mundt G, Gattermann R, Michaux JR, Maak S, Jansman HAH (2005) Genetic spatial structure of European common hamsters (Cricetus cricetus): a result of repeated range expansion and demographic bottlenecks. Mol Ecol 14:1473–1483

    CAS  PubMed  Google Scholar 

  • Nisimura T, Numata H (2001) Endogenous timing mechanism controlling the circannual pupation rhythm of the varied carpet beetle Anthrenus verbasci. J Comp Physiol A 187:433–440

    CAS  PubMed  Google Scholar 

  • Paul MJ, Zucker I, Schwartz WJ (2008) Tracking the seasons: the internal calendars of vertebrates. Philos Trans R Soc Lond B Biol Sci 363(1490):341–361

    Google Scholar 

  • Pengelley ET (1974) Circannual rhythmicity in hibernating mammals. In: Pengelley ET (ed) Circannual clocks: annual biological rhythms. Academic, New York, pp 95–160

    Google Scholar 

  • Petrovic A, Kayser C (1957) L’activité gonadotrope de la préhypophyse du hamster (Cricetus cricetus) au cours de l’année [Gonadotropic activity of the anterior pituitary in hamster (Cricetus cricetus) during the course of the year]. C R Seances Soc Biol Fil 151:996–998

    CAS  PubMed  Google Scholar 

  • Petrovic A, Kayser C (1958) Variations saisonnières du seuil réactionnel de la thyroide à la thyréostimuline chez le hamster (Cricetus cricetus) [Seasonal variations of reaction threshold of the thyroid to thyrostimuline in hamster (Cricetus cricetus)]. J Physiol 50:446–450

    CAS  Google Scholar 

  • Petterborg LJ, Reiter RJ, Brainard GC (1981) Ovarian response of pinealectomized and intact white-footed mice kept under naturally short photoperiods. Experientia (Basel) 37:247

    CAS  Google Scholar 

  • Pévet P, Pitrosky B (1997) The nocturnal melatonin peak and the photoperiodic response. Front Horm Res 23:14–24

    Google Scholar 

  • Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: a clock for all seasons. J Comp Physiol A 106:333–355

    Google Scholar 

  • Pleschka K, Nürnberger F (1997) Beta-adrenergic signal transduction in the hypothalamus of the European hamster: relation with the seasonal hibernation cycle and the diurnal activity cycle. Biol Cell 89:525–529

    CAS  PubMed  Google Scholar 

  • Pleschka K, Heinrich A, Witte K, Lemmer B (1996) Diurnal and seasonal changes in sympathetic signal transduction in cardiac ventricles of European hamsters. Am J Physiol Regul Integr Comp Physiol 270:R304–R309

    CAS  Google Scholar 

  • Randall CF, Bromage NR, Duston J, Symes J (1998) Photoperiod-induced phase-shifts of the endogenous clock controlling reproduction in the rainbow trout: a circannual phase-response curve. J Reprod Fertil 112:399–405

    CAS  PubMed  Google Scholar 

  • Raths P, Mletzko I (1971) Die Stoffwechselrhythmik des Hamsters (Cricetus cricetus L.) im Sommer [The metabolic rhythm of the hamster (Cricetus cricetus) in summer]. Zool Jahrb Biol 106:198–208

    Google Scholar 

  • Refinetti R (2012) Integration of biological clocks and rhythms. Compr Physiol 2:1213–1239

    PubMed  Google Scholar 

  • Reiners TE, Eidenschenk J, Neumann K, Nowak C (2014) Preservation of genetic diversity in a wild and captive population of a rapidly declining mammal, the common hamster of the French Alsace region. Mamm Biol 79:240–246

    Google Scholar 

  • Reiter RJ (1974) Pineal mediated regression of the reproductive organs of female hamsters exposed to natural photoperiods during the winter months. Am J Obstet Gynecol 118:878–880

    CAS  PubMed  Google Scholar 

  • Reiter RJ (1975) Exogenous and endogenous control of the annual reproductive cycle in the male golden hamster: participation of the pineal gland. J Exp Zool 191:111–120

    CAS  PubMed  Google Scholar 

  • Reiter RJ (1993) The melatonin rhythm: both a clock and a calendar. Experientia (Basel) 49:654–664

    CAS  Google Scholar 

  • Reznik G, Reznik-Schüller H, Mohr U (1976) Clinical anatomy of the European hamster Cricetus cricetus L. U.S. Department of Health, Education and Welfare, Public Health Services, National Institute of Health, Washington, DC

    Google Scholar 

  • Reznik-Schüller H, Reznik G (1973) Comparative histometric investigations of the testicular function of European hamsters (Cricetus cricetus) with and without hibernation. Fertil Steril 24:698–705

    PubMed  Google Scholar 

  • Reznik-Schüller H, Reznik G (1974) The influence of hibernation upon the ultrastructure of the Leydig cells and spermatids of the European hamster. Fertil Steril 25:621–635

    PubMed  Google Scholar 

  • Rhodes DH (1989) The influence of multiple photoperiods and pinealectomy on gonads, pelage and body weight in male meadow voles, Microtus pennsylvanicus. Comp Biochem Physiol A 93:445–449

    CAS  PubMed  Google Scholar 

  • Ribelayga C, Pévet P, Simonneaux V (1998) Possible involvement of neuropeptide Y in the seasonal control of hydroxyindole-O-methyltransferase activity in the pineal gland of the European hamster (Cricetus cricetus). Brain Res 777:247–250

    Google Scholar 

  • Robinson RA, Crick HQP, Learmonth JA, Maclean IMD, Thomas CD, Bairlein F, Forchhammer MC, Francis CM, Gill JA, Godley BJ, Harwood J, Hays GC, Huntley B, Hutson AM, Pierce GJ, Rehfisch MM, Sims DW, Begona Santos M, Sparks TH, Stroud DA, Visser ME (2009) Travelling through a warming world: climate change and migratory species. Endang Species Res 7:87–99

    Google Scholar 

  • Rusin MY, Banaszek A, Mishta AV (2013) The common hamster (Cricetus cricetus) in Ukraine: evidence for population decline. Folia Zool 62:207–213

    Google Scholar 

  • Ružić A (1976) Neke osobenosti hibernacije hrčka (Cricetus cricetus L.) i njihov značaj za suzbijanje ove štetočine [Some peculiarities in the hibernation of the hamster (Cricetus cricetus L.) and their importance for the control of that pest]. Zastita Bilja (Beograd) 27:397–417

    Google Scholar 

  • Saboureau M, Masson-Pévet M, Canguilhem B, Pévet P (1999) Circannual reproductive rhythm in the European hamster (Cricetus cricetus): demonstration of the existence of an annual phase of sensitivity to short photoperiod. J Pineal Res 26:9–16

    CAS  PubMed  Google Scholar 

  • Sáenz de Miera C, Monecke S, Bartzen-Sprauer J, Laran-Chich MP, Pévet P, Hazlerigg D, Simonneaux V (2014) A circannual clock drives expression of genes central for seasonal reproduction. Curr Biol 24(13):1500–1506

    PubMed  Google Scholar 

  • Scantlebury M, Danek-Gontard M, Bateman PW, Bennett NC, Manjerovic MB, Joubert KE, Waterman JM (2012) Seasonal patterns of body temperature daily rhythms in group-living Cape ground squirrels Xerus inauris. PLoS One 7:e36053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scherbarth F, Steinlechner S (2008) The annual activity pattern of Djungarian hamsters (Phodopus sungorus) is affected by wheel-running activity. Chronobiol Int 25:905

    PubMed  Google Scholar 

  • Schmelzer E (2005) Aktivitätsmuster und Raumnutzung einer Feldhamsterpopulation (Cricetus cricetus) im urbanen Lebensraum [Activity patterns and spatial organisation in a colony of common hamsters (Cricetus cricetus) in an urban environment]. Diploma thesis. Faculty of Life Sciences, University of Vienna

    Google Scholar 

  • Schmelzer E, Millesi E (2003) Activity patterns in a population of European hamsters (Cricetus cricetus) in an urban environment. In: Nechay G (ed) 11th meeting of the international hamster workgroup. Budapest, Hungary, pp 19–22

    Google Scholar 

  • Seluga K, Stubbe M, Mammen U (1996) Zur Reproduktion des Feldhamsters (Cricetus cricetus L.) und zum Ansiedlungsverhalten der Jungtiere. [Reproduction of the common hamster (Cricetus cricetus L.) and the settlement of the young]. Abh Ber Mus Heineanum 3:129–142

    Google Scholar 

  • Sidorov GV, Kassal BY, Goncharova AV, Vakhrushev KV (2011) Theriofauna of Omsk oblast: game species of rodents [in Russian]. Nauka (Publishing House Amphora), Omsk

    Google Scholar 

  • Siutz C, Pluch M, Ruf T, Millesi E (2012) Sex differences in foraging behaviour, body fat and hibernation patterns of free-ranging common hamsters. In: Ruf T, Bieber C, Arnold W, Millesi E (eds) Living in a seasonal world. Springer-Verlag, Berlin

    Google Scholar 

  • Skene DJ, Masson-Pévet M, Pévet P (1993) Seasonal changes in melatonin binding sites in the pars tuberalis of male European hamsters and the effect of testosterone manipulation. Endocrinology 132:1682–1686

    CAS  PubMed  Google Scholar 

  • Steinlechner S (1992) Melatonin: an endocrine signal for the night length. Verh Dtsch Zool Ges 85:217–229

    CAS  Google Scholar 

  • Steinlechner S (2011) Biologische Bedeutung saisonaler und circannualer Rhythmen bei Tier und Mensch [Biological significance of seasonal and circannual rhythms in animals and humans]. Nova Acta Leopoldina NF 114:85–109

    Google Scholar 

  • Stoeckel ME, Petrovic A, Porte A, Kayser C (1964a) Etude ultrastructurale du cortex surrénalien chez un hibernant, le hamster ordinaire (Cricetus cricetus), au cours du cycle saisonnier [Ultrastructural study of the adrenal cortex in a hibernator, the common hamster (Cricetus cricetus)]. J Physiol 56:442–443

    CAS  Google Scholar 

  • Stoeckel ME, Petrovic A, Porte A, Kayser C (1964b) Variations ultrastructurales du cortex surrénalien au cour du cycle saisonnier chez un hibernant, le Hamster ordinaire (Cricetus cricetus) [Ultrastructural variations of the adrenal cortex during the seasonal cycle of a hibernator, the common hamster (Cricetus cricetus)]. C R Séances Soc Biol Fil 158:1570–1572

    CAS  PubMed  Google Scholar 

  • Stoeckel ME, Porte A, Canguilhem B (1967) Sur l’ultrastructure des cellules parafolliculaires de la thyroide du hamster sauvage (Cricetus cricetus) [Ultrastructure of the parafollicular cells of the wild hamster (Cricetus cricetus)]. C R Acad Sci Paris 264D:2490–2492

    Google Scholar 

  • Stubbe M, Stubbe A (1998) The European hamster (Cricetus cricetus L.) as prey of human and animal as well as its importance for the ecosystem. In: Stubbe M, Stubbe A (eds) Ecology and protection of the common hamster. Martin-Luther-Universität Halle-Wittenberg, Halle/Saale, pp 81–86

    Google Scholar 

  • Surdacki S (1964) Über die Nahrung des Hamsters, Cricetus cricetus Linnaeus, 1758 [On the nutrition of hamsters, Cricetus cricetus Linnaeus, 1758]. Acta Theriol 9:384–386

    Google Scholar 

  • Tournier BB, Dardente H, Simonneaux V, Vivien-Roels B, Pevet P, Masson-Pevet M, Vuillez P (2007) Seasonal variations of clock gene expression in the suprachiasmatic nuclei and pars tuberalis of the European hamster (Cricetus cricetus). Eur J Neurosci 25:1529–1536

    PubMed  Google Scholar 

  • Turek FW, Campbell CS (1979) Photoperiodic regulation of neuroendocrine-gonadal activity. Biol Reprod 20:32–50

    CAS  PubMed  Google Scholar 

  • van Oort BE, Tyler NJ, Gerkema MP, Folkow L, Blix AS, Stokkan KA (2005) Circadian organization in reindeer. Nature (Lond) 438:1095–1096

    Google Scholar 

  • van Oort BEH, Tyler NJC, Gerkema MP, Folkow L, Stokkan KA (2007) Where clocks are redundant: weak circadian mechanisms in reindeer living under polar photic conditions. Naturwissenschaften 94:183–194

    CAS  PubMed  Google Scholar 

  • Visser ME, Caro SP, Oers KV, Schaper SV, Helm B (2010) Phenology, seasonal timing and circannual rhythms: towards a unified framework. Philos Trans R Soc B 365:3113–3127

    CAS  Google Scholar 

  • Vivien-Roels B, Pévet P, Masson-Pévet M, Canguilhem B (1992) Seasonal variations in the daily rhythm of pineal gland and/or circulating melatonin and 5-methoxytryptophol concentrations in the European hamster, Cricetus cricetus. Gen Comp Endocrinol 86:239–247

    CAS  PubMed  Google Scholar 

  • Vivien-Roels B, Pitrosky B, Zitouni M, Malan A, Canguilhem B, Bonn D, Pévet P (1997) Environmental control of the seasonal variations in the daily pattern of melatonin synthesis in the European hamster, Cricetus cricetus. Gen Comp Endocrinol 106:85–94

    CAS  PubMed  Google Scholar 

  • Vohralík V (1974) Biology of the reproduction of the common hamster, Cricetus cricetus (L.). Vest Cs Spol Zool 38:228–240

    Google Scholar 

  • Vuillez P, Jacob N, Teclemariam-Mesbah R, Pévet P (1996) In Syrian and European hamsters, the duration of sensitive phase to light of the suprachiasmatic nuclei depends on the photoperiod. Neurosci Lett 208:37–40

    CAS  PubMed  Google Scholar 

  • Ware JV, Nelson OL, Robbins CT, Jansen HT (2012) Temporal organization of activity in the brown bear (Ursus arctos): roles of circadian rhythms, light, and food entrainment. Am J Physiol Regul Integr Comp Physiol 303:R890–R902

    CAS  PubMed  Google Scholar 

  • Wassmer T (2004) Body temperature and above-ground patterns during hibernation in European hamsters (Cricetus cricetus L.). J Zool Lond 262:281-288.

    Google Scholar 

  • Waßmer T, Wollnik F (1997) Timing of torpor bouts during hibernation in European hamsters (Cricetus cricetus L.). J Comp Physiol B 167:270–279

    PubMed  Google Scholar 

  • Weidling A, Stubbe M (1998) Eine Standardmethode zur Feinkartierung von Feldhamsterbauen [A standard method for exact mapping of burrows of European hamsters]. In: Stubbe M, Stubbe A (eds) Ecology and protection of the common hamster. Martin-Luther-Universität Halle-Wittenberg, Halle/Saale, pp 259–276

    Google Scholar 

  • Weinert D, Schöttner K, Surov AV, Fritzsche P, Feoktistova NY, Ushakova MV, Ryurikow GB (2009) Circadian activity rhythm of dwarf hamsters (Phodopus spp.) under laboratory and semi-natural conditions. Russ J Theriol 8:47–58

    Google Scholar 

  • Weinhold U, Kayser A (2006) Der Feldhamster [The European hamster]. Westarp Wissenschaften-Verlagsgesellschaft, Hohenwarsleben

    Google Scholar 

  • Wendt W (1989) Zum Aktivitätsverhalten des Feldhamsters, Cricetus cricetus L., im Freigehege [About the activity behaviour of European hamsters, Cricetus cricetus L., in outdoor enclosures. Säugetierkd Inf 3:3–12

    Google Scholar 

  • Wendt W (1991) Der Winterschlaf des Feldhamsters Cricetus cricetus (L., 1758): energetische Grundlagen und Auswirkungen auf die Populationsdynamik [Hibernation in the European hamster Cricetus cricetus (L. 1758): energetic basics and the consequences on population dynamics]. Populationsökologie von Kleinsäugerarten. Wiss Beitr Univ Halle 1990/34 (P42):67–78

    Google Scholar 

  • Williams CT, Barnes BM, Buck CL (2011a) Daily body temperature rhythms persist under the midnight sun but are absent during hibernation in free-living arctic ground squirrels. Biol Lett 8:31–34

    PubMed Central  PubMed  Google Scholar 

  • Williams CT, Sheriff MJ, Schmutz JA, Kohl F, Tøien Ø, Buck CL, Barnes BM (2011b) Data logging of body temperatures provides precise information on phenology of reproductive events in a free-living Arctic hibernator. J Comp Physiol B 181:1101–1109

    PubMed  Google Scholar 

  • Wollnik F, Schmidt B (1995) Seasonal and daily rhythms of body temperature in the European hamster (Cricetus cricetus) under semi-natural conditions. J Comp Physiol B 165:171–182

    CAS  PubMed  Google Scholar 

  • Wollnik F, Breit A, Reinke D (1991) Seasonal change in the temporal organization of wheel-running activity in the European hamster, Cricetus cricetus. Naturwissenschaften 78:419–422

    CAS  PubMed  Google Scholar 

  • Woodfill CJI, Wayne NL, Moenter SM, Karsch FJ (1994) Photoperiodic synchronization of a circannual reproductive rhythm in sheep: identification of season-specific time cues. Biol Reprod 50:965–976

    CAS  PubMed  Google Scholar 

  • Ziomek J (2011) Chomik europejski (Cricetus cricetus L.) w mozaikowym krajobrazie rolniczym południowej Polski [The European hamster (Cricetus cricetus L.) in a mosaic of arable fields in south Poland]. Dissertation. Department of Systematic Zoology, Adam Mickiewicz University of Poznan, Wroclaw

    Google Scholar 

  • Zucker I (2001) Circannual rhythms: mammals. In: Takahashi JS, Turek FW, Moore RY (eds) Handbook of behavioral neurobiology: circadian clocks. Kluwer Academic/Plenum, New York, pp 509–528

    Google Scholar 

Download references

Acknowledgments

This work was mainly supported by the German Wildlife Foundation (Deutsche Wildtierstiftung). Further support came from the CNRS and the University of Stuttgart, as well as the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Monecke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Monecke, S., Wollnik, F., Pévet, P. (2014). The Circannual Clock in the European Hamster: How Is It Synchronized by Photoperiodic Changes?. In: Numata, H., Helm, B. (eds) Annual, Lunar, and Tidal Clocks. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55261-1_14

Download citation

Publish with us

Policies and ethics