Skip to main content

The Breeding of Bioethanol-Producing Yeast by Detoxification of Glycolaldehyde, a Novel Fermentation Inhibitor

  • Chapter
  • First Online:
Stress Biology of Yeasts and Fungi

Abstract

The inhibitory effect of lignocellulose hydrolysates poses a significant technological barrier to the industrialization of second-generation bioethanol production. Even though approximately 60 inhibitory compounds have been reported to be present in lignocellulose hydrolysates, we discovered glycolaldehyde as a novel fermentation inhibitor and established a key role for the toxic compound in second-generation bioethanol production. Glycolaldehyde is primarily generated from retro-aldol condensation of monomeric sugars liberated during the lignocellulosic biomass pretreatment process. It substantially inhibits yeast growth and ethanol fermentation at a very low concentration. Moreover, glycolaldehyde is a stronger growth inhibitor than other reported major fermentation inhibitors such as 5-hydroxymethyl furfural (5-HMF) and furfural. Through comprehensive genomic analysis and in-depth analysis of fermentation metabolic consequences in response to redox cofactor perturbation with glycolaldehyde, we discovered the toxic mechanisms and pathways necessary to ultimately engineer a glycolaldehyde-tolerant yeast strain. This chapter provides novel knowledge on glycolaldehyde toxicity and molecular mechanisms for in situ biological detoxification of glycolaldehyde to improve the bioethanol fermentation of Saccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adschiri T, Hirose S, Malaluan R, Arai K (1993) Noncatalytic conversion of cellulose in supercritical and subcritical water. J Chem Eng Jpn 26:676–680

    Article  CAS  Google Scholar 

  • Almeida JRM, Modig T, Petersson A et al (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349

    Article  CAS  Google Scholar 

  • Bakker BM, Overkamp KM, van Maris AJA et al (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:15–37

    Article  CAS  PubMed  Google Scholar 

  • Bonn G, Concin R, Bobleter O (1983) Hydrothermolysis—a new process for the utilization of biomass. Wood Sci Technol 17:195–202

    Article  CAS  Google Scholar 

  • Bruinenberg PM, Van Dijken JP, Scheffers WA (1983) A theoretical analysis of NADPH production and consumption in yeasts. J Gen Microbiol 129:953–964

    CAS  Google Scholar 

  • Celton M, Goelzer A, Camarasa C et al (2012) A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae. Metab Eng 14:366–379

    Article  CAS  PubMed  Google Scholar 

  • Costenoble R, Valadi H, Gustafsson L et al (2000) Micro aerobic glycerol formation in Saccharomyces cerevisiae. Yeast 16:483–495

    Article  Google Scholar 

  • Förster J, Famili I, Fu P et al (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253

    Article  PubMed Central  PubMed  Google Scholar 

  • Glomb MA, Monnier VM (1995) Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J Biol Chem 270:10017–10026

    Article  CAS  PubMed  Google Scholar 

  • Grabowska D, Chelstowska A (2003) The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J Biol Chem 278:13984–13988

    Article  CAS  PubMed  Google Scholar 

  • Grey M, Schmidt M, Brendel M (1996) Overexpression of ADH1 confers hyper-resistance to formaldehyde in Saccharomyces cerevisiae. Curr Genet 29:437–440

    CAS  PubMed  Google Scholar 

  • Hayashi T, Namiki M (1986) Role of sugar fragmentation in an early stage browning of amino-carbonyl reaction of sugar with amino acid. Agric Biol Chem 50:1965–1970

    Article  CAS  Google Scholar 

  • Heer D, Heine D, Sauer U (2009) Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Appl Environ Microbiol 75:7631–7638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horvath IS, Taherzadeh MJ, Niklasson C, Liden G (2001) Effects of furfural on anaerobic continuous cultivation of Saccharomyces cerevisiae. Biotechnol Bioeng 75:540–549

    Article  CAS  PubMed  Google Scholar 

  • Jayakody LN, Hayashi N, Kitagaki H (2011) Identification of glycolaldehyde as the key inhibitor of bioethanol fermentation by yeast and genome-wide analysis of its toxicity. Biotechnol Lett 33(2):285–292

    Article  CAS  PubMed  Google Scholar 

  • Jayakody LN, Horie K, Hayashi N, Kitagaki H (2012) Improvement of Saccharomyces cerevisiae to hot-compressed water treated cellulose by expression of ADH1. Appl Microbiol Biotechnol 94:273–283

    Article  CAS  PubMed  Google Scholar 

  • Jayakody LN, Horie K, Hayashi N, Kitagaki H (2013a) Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 94:273–283

    Article  Google Scholar 

  • Jayakody LN, Hayashi N, Kitagaki H (2013b) Molecular mechanisms for detoxification of major aldehyde inhibitors for production of bioethanol by Saccharomyces cerevisiae from hot-compressed water-treated lignocelluloses. In: Mendez-Vilas A (ed) Material and process for energy: communicating current research and technology development. Formatex Research Center, Badajox, Spain, pp 302–311

    Google Scholar 

  • Jönsson LJ, Alriksson B, Nilvebrant N (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotech Biofuel 6:16

    Article  Google Scholar 

  • Katsunobu E, Shiro S (2002) A comparative study on chemical conversion of cellulose between the batch-type and flow-type systems in supercritical water. Cellulose 9:301–311

    Article  Google Scholar 

  • Kumagai S, Hayashi N, Sasaki T et al (2004) Fractionation and saccharification of cellulose and hemicellulose in rice hull by hot-compressed-water treatment with two-step heating. J Jpn Inst Energy 83:776–781

    Article  CAS  Google Scholar 

  • Kumar P, Diane MB, Michael JD, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Landucci R, Goodman B, Wyman C (1994) Methodology of evaluating the economics of biologically producing chemicals and materials from alternative feedstocks. Appl Biochem Biotechnol 1:677–696

    Article  Google Scholar 

  • Leskovac V, Trivić S, Pericin D (2002) The three zinc-containing alcohol dehydrogenases from baker’s yeast, Saccharomyces cerevisiae. FEMS Yeast Res 2:481–494

    CAS  PubMed  Google Scholar 

  • Liu ZL (2011) Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol 90:809–825

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Moon JA (2009) Novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene 446:1–10

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Yamauchi K, Phaiiboonsilpa N, Saka S (2009) Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water. J Wood Sci 55:367–375

    Article  CAS  Google Scholar 

  • Matsumoto T, Ozawa Y, Taguchi K et al (2010) Diabetes-associated changes and role of N-epsilon-(carboxymethyl)lysine in big ET-1-induced coronary vasoconstriction. Peptides 31:346–353

    Article  CAS  PubMed  Google Scholar 

  • Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresourc Technol 96:673–686

    Article  CAS  Google Scholar 

  • Naik SN, Vaibhav VG, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597

    Article  CAS  Google Scholar 

  • Nakata T, Miyafuji H, Saka S (2006) Bioethanol from cellulose with supercritical water treatment followed by enzymatic hydrolysis. Appl Biochem Biotechnol 129:476–485

    Article  PubMed  Google Scholar 

  • Oura E (1977) Reaction-products of yeast fermentations. Process Biochem 12:19–21

    CAS  Google Scholar 

  • Pagliardini J, Hubmann G, Alfenore S et al (2013) The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae. Microb Cell Fact 12:29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000a) Fermentation of lignocellulosic hydrolysates. I: inhibitors and mechanisms of inhibition. Bioresourc Technol 74:17–24

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000b) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresourc Technol 74:25–33

    Article  CAS  Google Scholar 

  • Petersson A, Almeida JRM, Modig T et al (2006) A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 6:455–464

    Article  Google Scholar 

  • Ragauskas AJ, Charlotte KW, George B et al (2006) The path forward for biofuel and biomaterials. Science 311:484–489

    Article  CAS  PubMed  Google Scholar 

  • Roca C, Nielsen J, Olsson L (2003) Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Appl Environ Microbiol 69:4732–4736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schubert C (2006) Can biofuel finally take center stage. Nat Biotechnol 24:777–784

    Article  CAS  PubMed  Google Scholar 

  • Skerker JM, Leon D, Price MN et al (2013) Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates. Mol Syst Bio 9:674

    Article  Google Scholar 

  • Sonderegger M, Schumperli M, Sauer U (2004) Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl Environ Microbiol 70:2892–2897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takeuchi M, Makita Z (2001) Alternative routes for the formation of immunochemically distinct advanced glycation end-products in vivo. Curr Mol Med 1:305–315

    Article  CAS  PubMed  Google Scholar 

  • Tenenbaum DJ (2008) Food vs. fuel: diversion of crops could cause more hunger. Environ Health Perspect 116:254–257

    Article  Google Scholar 

  • Vemuri GN, Eiteman MA, McEwen JE et al (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 104:2402–2407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wright DJ (1988) Ethanol from lignocellulosics: an overview. Energy Prog 84:71–80

    Google Scholar 

  • Yaylayan VA (2003) Recent advances in the chemistry of Strecker degradation and Amadori rearrangement: implications to aroma and color formation. Food Sci Technol Res 9:1–6

    Article  CAS  Google Scholar 

  • Yu Y, Lou X, Wu H (2007) Some recent advances in hydrolysis of biomass in hot compressed water and its comparison with other hydrolysis methods. Energy Fuel 22:46–60

    Article  Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kitagaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Jayakody, L.N., Hayashi, N., Kitagaki, H. (2015). The Breeding of Bioethanol-Producing Yeast by Detoxification of Glycolaldehyde, a Novel Fermentation Inhibitor. In: Takagi, H., Kitagaki, H. (eds) Stress Biology of Yeasts and Fungi. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55248-2_1

Download citation

Publish with us

Policies and ethics