Skip to main content

Genome Editing Using Site-Specific Nucleases in Amphibians

  • Chapter
  • First Online:
Targeted Genome Editing Using Site-Specific Nucleases

Abstract

Amphibians have a long history as model animals and have greatly contributed to biological research fields, especially developmental biology and cell biology, including embryonic induction, signal transduction, pattern formation, cell cycle regulation, nuclear reprogramming, metamorphosis, and organ regeneration. In addition to the historical achievements, recent advances in genome editing using site-specific nucleases have facilitated reverse genetics research targeting genes of interest in amphibians. The epochal tool enables the performance of not only knockout of genes of interest, but also knockin of genes into particular target genomic loci, which was never previously possible in amphibians. Here, we review recent studies involving genome editing with zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) in the amphibians Xenopus laevis (frog), Xenopus (Silurana) tropicalis (frog), Pleurodeles waltl (newt), and Ambystoma mexicanum (axolotl), all of which are known to be excellent model animals in developmental biology and regeneration biology. We also discuss their possibilities as model animals when carrying such a robust reverse genetics tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agata K, Inoue T (2012) Survey of the differences between regenerative and non-regenerative animals. Dev Growth Differ 54:143–152

    Article  CAS  PubMed  Google Scholar 

  • Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG 2nd, Tan W, Penheiter SG, Ma AC, Leung AY, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491:114–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blitz IL, Biesinger J, Xie X, Cho KW (2013) Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system. Genesis 51:827–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brockes JP, Kumar A (2002) Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol 3:566–574

    Article  CAS  PubMed  Google Scholar 

  • Carroll D (2014) Genome engineering with targetable nucleases. Annu Rev Biochem 83:409–439

    Article  CAS  PubMed  Google Scholar 

  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cradick TJ, Fine EJ, Antico CJ, Bao G (2013) CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 41:9584–9592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8:74–79

    Article  CAS  PubMed  Google Scholar 

  • Flowers GP, Timberlake AT, McLean KC, Monaghan JR, Crews CM (2014) Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease. Development 141:2165–2171

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gestri G, Carl M, Appolloni I, Wilson SW, Barsacchi G, Andreazzoli M (2005) Six3 functions in anterior neural plate specification by promoting cell proliferation and inhibiting Bmp4 expression. Development 132:2401–2413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo J, Gaj T, Barbas CF 3rd (2010) Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J Mol Biol 400:96–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo X, Zhang T, Hu Z, Zhang Y, Shi Z, Wang Q, Cui Y, Wang F, Zhao H, Chen Y (2014) Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development 141:707–714

    Article  CAS  PubMed  Google Scholar 

  • Harland RM, Grainger RM (2011) Xenopus research: metamorphosed by genetics and genomics. Trends Genet 27:507–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashi T, Yokotani N, Tane S, Matsumoto A, Myouga A, Okamoto M, Takeuchi T (2013) Molecular genetic system for regenerative studies using newts. Dev Growth Differ 55:229–236

    Article  PubMed  Google Scholar 

  • Hayashi T, Sakamoto K, Sakuma T, Yokotani N, Inoue T, Kawaguchi E, Agata K, Yamamoto T, Takeuchi T (2014) Transcription activator-like effector nucleases efficiently disrupt the target gene in Iberian ribbed newts (Pleurodeles waltl), an experimental model animal for regeneration. Dev Growth Differ 56:115–121

    Article  CAS  PubMed  Google Scholar 

  • Hellsten U, Khokha MK, Grammer TC, Harland RM, Richardson P, Rokhsar DS (2007) Accelerated gene evolution and subfunctionalization in the pseudotetraploid frog Xenopus laevis. BMC Biol 5:31

    Article  PubMed Central  PubMed  Google Scholar 

  • Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 328:633–636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi S, Cliffe R, Amaya E (2012) Highly efficient bi-allelic mutation rates using TALENs in Xenopus tropicalis. Biol Open 1:1273–1276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110:13904–13909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  • Khattak S, Schuez M, Richter T, Knapp D, Haigo SL, Sandoval-Guzman T, Hradlikova K, Duemmler A, Kerney R, Tanaka EM (2013) Germline transgenic methods for tracking cells and testing gene function during regeneration in the axolotl. Stem Cell Reports 1:90–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumasaka M, Sato S, Yajima I, Yamamoto H (2003) Isolation and developmental expression of tyrosinase family genes in Xenopus laevis. Pigment Cell Res 16:455–462

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Guo X, Liu Y, Cao Y, Deng Y, Chen X, Cheng CH, Dawid IB, Chen Y, Zhao H (2012) Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A 109:17484–17489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lepperdinger G, Brunauer R, Gassner R, Jamnig A, Kloss F, Laschober GT (2008) Changes of the functional capacity of mesenchymal stem cells due to aging or age-associated disease—implications for clinical applications and donor recruitment. Transfus Med Hemother 35:299–305

    Article  PubMed Central  PubMed  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785

    Article  CAS  PubMed  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  PubMed  Google Scholar 

  • Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, Cathomen T (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39:9283–9293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa Y, Yamamoto T, Suzuki K, Araki K, Takeda N, Ohmuraya M, Sakuma T (2014) Screening methods to identify TALEN-mediated knockout mice. Exp Anim 63:79–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakajima K, Yaoita Y (2013) Comparison of TALEN scaffolds in Xenopus tropicalis. Biol Open 2:1364–1370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakajima K, Nakajima T, Takase M, Yaoita Y (2012) Generation of albino Xenopus tropicalis using zinc-finger nucleases. Dev Growth Differ 54:777–784

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM (2013) Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51:835–843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ota S, Hisano Y, Muraki M, Hoshijima K, Dahlem TJ, Grunwald DJ, Okada Y, Kawahara A (2013) Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells 18:450–458

    Article  CAS  PubMed  Google Scholar 

  • Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rungger-Brändle E, Ripperger JA, Steiner K, Conti A, Stieger A, Soltanieh S, Rungger D (2010) Retinal patterning by Pax6-dependent cell adhesion molecules. Dev Neurobiol 70:764–780

    Article  PubMed  Google Scholar 

  • Sakane Y, Sakuma T, Kashiwagi K, Kashiwagi A, Yamamoto T, Suzuki KT (2014) Targeted mutagenesis of multiple and paralogous genes in Xenopus laevis using two pairs of transcription activator-like effector nucleases. Dev Growth Differ 56:108–114

    Article  CAS  PubMed  Google Scholar 

  • Sakuma T, Hosoi S, Woltjen K, Suzuki K, Kashiwagi K, Wada H, Ochiai H, Miyamoto T, Kawai N, Sasakura Y, Matsuura S, Okada Y, Kawahara A, Hayashi S, Yamamoto T (2013a) Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells 18:315–326

    Article  CAS  PubMed  Google Scholar 

  • Sakuma T, Ochiai H, Kaneko T, Mashimo T, Tokumasu D, Sakane Y, Suzuki K, Miyamoto T, Sakamoto N, Matsuura S, Yamamoto T (2013b) Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci Rep 3:3379

    Article  PubMed Central  PubMed  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29:697–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki KT, Isoyama Y, Kashiwagi K, Sakuma T, Ochiai H, Sakamoto N, Furuno N, Kashiwagi A, Yamamoto T (2013) High efficiency TALENs enable F0 functional analysis by targeted gene disruption in Xenopus laevis embryos. Biol Open 2:448–452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793

    Article  CAS  PubMed  Google Scholar 

  • Turner DL, Weintraub H (1994) Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev 8:1434–1447

    Article  CAS  PubMed  Google Scholar 

  • Uno Y, Nishida C, Takagi C, Ueno N, Matsuda Y (2013) Homoeologous chromosomes of Xenopus laevis are highly conserved after whole-genome duplication. Heredity (Edinb) 111:430–436

    Article  CAS  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whited JL, Lehoczky JA, Tabin CJ (2012) Inducible genetic system for the axolotl. Proc Natl Acad Sci U S A 109:13662–13667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young JJ, Cherone JM, Doyon Y, Ankoudinova I, Faraji FM, Lee AH, Ngo C, Guschin DY, Paschon DE, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Harland RM, Zeitler B (2011) Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A 108:7052–7057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully thank Profs. Takashi Yamamoto, Takashi Takeuchi, and Akihiko Kashiwagi, Drs. Tetsushi Sakuma and Keiko Kashiwagi, Mr. Yuto Sakane, and Ms. Miyuki Suzuki for their valuable help and advice. This work was supported by a Grant-in-Aid for Young Scientists (B) to T. H. (25840086) and Grants-in-Aid for Scientific Research on Innovative Areas to K.T.S. (25124708) and T.H. (25124706) from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ken-ichi T. Suzuki or Toshinori Hayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Suzuki, Ki.T., Hayashi, T. (2015). Genome Editing Using Site-Specific Nucleases in Amphibians. In: Yamamoto, T. (eds) Targeted Genome Editing Using Site-Specific Nucleases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55227-7_9

Download citation

Publish with us

Policies and ethics