Skip to main content

A Classification of Ricci Solitons as (k, μ)-Contact Metrics

  • Conference paper
  • First Online:
Real and Complex Submanifolds

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 106))

Abstract

If a non-Sasakian (k, μ)-contact metric g is a non-trivial Ricci soliton on a (2n + 1)-dimensional smooth manifold M, then (M, g) is locally a three-dimensional Gaussian soliton, or a gradient shrinking rigid Ricci soliton on the trivial sphere bundle S n(4) × E n+1, or a non-gradient expanding Ricci soliton with \(k = 0,\mu = 4\). The last case occurs on a Lie group with a left invariant metric, especially for dimension 3, on Sol 3 regarded also as the group E(1, 1) of rigid motions of the Minkowski 2-space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blair, D.E.: Two remarks on contact metric structures. Tohoku Math. J. 29, 319–324 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Birkhauser, Boston (2002)

    Book  MATH  Google Scholar 

  3. Blair, D.E., Koufogiorgos, T., Papantoniou, B.J.: Contact metric manifolds satisfying a nullity condition. Israel J. Math. 91, 189–214 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boeckx, E.: A full classification of contact metric (k, μ)-spaces. Illinois J. Math. 44, 212–219 (2000)

    MATH  MathSciNet  Google Scholar 

  5. Boyer, C.P., Galicki, K.: Sasakian Geometry. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  6. Chow, B., Chu, S., Glickenstein, D, Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications, Part I: Geometric Aspects. Mathematical Surveys and Monographs, vol. 135. The American Mathematical Society, Providence (2004)

    Google Scholar 

  7. Cho, J.T., Sharma, R.: Contact geometry and Ricci solitons. Int. J. Geom. Methods Math. Phy. 7, 951–960 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Friedan, D.H.: Non-linear models in 2 +ε dimensions. Ann. Phys. 163, 318–419 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ghosh, A., Sharma, R.: K-contact metrics as Ricci solitons. Beitr. Alg. Geom. 53, 25–30 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ghosh, A., Sharma, R.: Sasakian metric as a Ricci Soliton and related results. J. Geom. Phys. 75, 1–6 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ghosh, A., Sharma, R., Cho, J.T.: Contact metric manifolds with η-parallel torsion tensor. Ann. Glob. Anal. Geom. 34, 287–299 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hamilton, R.S.: The Ricci Flow: An Introduction in: Mathematics and General Relativity (Santa Cruz, CA, 1986), 237–262. Contemp. Math. vol. 71. The American Mathematical Society, Providence (1988)

    Google Scholar 

  13. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. Preprint http:arXiv.orgabsmath.DG/02111159

  14. Petersen, P., Wylie, W.: Rigidity of gradient Ricci solitons. Pac. J. Math. 241, 329–345 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sharma, R.: Certain results on K-contact and (k, μ)-contact manifolds. J. Geom. 89, 138–147 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sharma, R., Ghosh, A.: Sasakian 3-manifold as a Ricci soliton represents the Heisenberg group. Int. J. Geom. Methods Mod. Phys. 8, 149–154 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tanno, S.: The topology of contact Riemannian manifolds. Illinois J. Math. 12, 700–717 (1968)

    MATH  MathSciNet  Google Scholar 

  18. Yano, K.: Integral Formulas in Riemannian Geometry. Marcel Dekker, New York (1970)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank Professor Peter Petersen for help on a particular issue. R.S. was supported by the University of New Haven Research Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this paper

Cite this paper

Ghosh, A., Sharma, R. (2014). A Classification of Ricci Solitons as (k, μ)-Contact Metrics. In: Suh, Y.J., Berndt, J., Ohnita, Y., Kim, B.H., Lee, H. (eds) Real and Complex Submanifolds. Springer Proceedings in Mathematics & Statistics, vol 106. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55215-4_31

Download citation

Publish with us

Policies and ethics