Skip to main content

Theory of Photoelectron Spectroscopy

  • Chapter
  • First Online:
Electronic Processes in Organic Electronics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 209))

  • 2260 Accesses

Abstract

Some features in photoemission theory from organic solids are reviewed starting from many-body scattering theory. This theoretical approach is direct and transparent, however, the extension to discuss temperature effects is rather difficult. In order to discuss phonon and many-body effects we build a theoretical frame based on Keldysh Green’s functions. Phonon effects such as Debye–Waller factor, electron–phonon interaction and recoil effects are extensively discussed. For the practical calculations multiple scattering formulas work so well. Different features obtained from UPS and XPS analyses are discussed for the excitations from extended levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Hüfner, Photoemission Spectroscopies and Applications, 3rd edn. (Springer, New York, 2003)

    Google Scholar 

  2. N. Ueno, S. Kera, Prog. Surf. Sci. 83, 490 (2008)

    Article  ADS  Google Scholar 

  3. I.B. Bersuker, The Jahn-Teller Effect (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  4. W. Bardyszewski, L. Hedin, Physica Scripta 32, 439 (1985)

    Article  ADS  Google Scholar 

  5. L. Hedin, J. Michiels, J. Inglesfield, Phys. Rev. B 58, 15565 (1998)

    Article  ADS  Google Scholar 

  6. L. Hedin, in Solid State Photoemission and Related Methods, ed. by W.A. Schattke, M.A. Van Hove (Wiley-VCH, Weinheim, 2003), pp. 116–140

    Google Scholar 

  7. C. Caroli, D. Leder-Rozenblatt, B. Roulet, D. Saint-James, Phys. Rev. B 8, 4552 (1973)

    Article  ADS  Google Scholar 

  8. C.-O. Almbladh, Physica Scripta 32, 341 (1985)

    Article  ADS  Google Scholar 

  9. T. Fujikawa, H. Arai, J. Electron Spect. Relat. Phenom. 123, 19 (2002)

    Article  Google Scholar 

  10. T. Fujikawa, H. Arai, Chem. Phys. Lett. 368, 147 (2003)

    Article  ADS  Google Scholar 

  11. T. Fujikawa, H. Arai, J. Electron Spect. Relat. Phenom. 149, 61 (2005)

    Article  Google Scholar 

  12. T. Fujikawa, H. Arai, J. Electron Spect. Relat. Phenom. 136, 85 (2004)

    Article  Google Scholar 

  13. T. Fujikawa, L. Hedin, Phys. Rev. B 40, 11507 (1989)

    Article  ADS  Google Scholar 

  14. D.F. DuBois, Lecture in Theoretical Physics, ed. by W.E. Brittin (Gordon and Breach, New York, 1967), pp. 469–619

    Google Scholar 

  15. D.C. Langreth, Linear and Nonlinear Transport in Solids, ed. by J. Devreese, V.E. van Doren (Plenum, New York, 1976), 3 p

    Google Scholar 

  16. H. Arai, T. Fujikawa, Phys. Rev. B 72, 075102 (2005)

    Article  ADS  Google Scholar 

  17. J. Osterwalder, T. Greber, S. Hüfner, L. Schlapbach, Phys. Rev. Lett. 64, 2683 (1990)

    Article  ADS  Google Scholar 

  18. T. Fujikawa, H. Arai, XAFS13, ed. by E. Hedman, P. Pianetta. AIP-Conference Proceedings, vol. CP882, p. 75 (American Institute of Physics, Melville, 2007)

    Google Scholar 

  19. G. Baym, Ann. Phys. 14, 1 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  20. L. Hedin, S. Lundqvist, Solid State Physics, vol. 23, ed. by F. Seitz, D. Turnbull, H. Ehrenreich (Academic, New York, 1969), p. 1

    Google Scholar 

  21. N.D. Mermin, J. Math. Phys. 7, 1038 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  22. J. Kröger, Rep. Prog. Phys. 69, 899 (2006)

    Article  ADS  Google Scholar 

  23. H. Arai, N. Ueno, T. Fujikawa, XAFS13, ed. by E. Hedman, P. Pianetta. AIP Conference Proceedings, vol. CP882, p. 108 (American Institute of Physics, Melville, 2007)

    Google Scholar 

  24. T. Cuk, D.H. Lu, X.-J. Zhou, X.-J. Shen, T.P. Devereaux, N. Nagaosa, Phys. Status Solidi (b) 242, 11 (2005)

    Google Scholar 

  25. T. Fujikawa, H. Arai, J. Electron Spect. Relat. Phenom. 174, 85 (2009)

    Article  Google Scholar 

  26. J. Igarashi, K. Hirai, Phys. Rev. B 54, 17820 (1994)

    Article  ADS  Google Scholar 

  27. K. Hatada, K. Hayakawa, M. Benfatto, C.R. Natoli, J. Phys. Condens. Matter 22, 185501 (2010)

    Article  ADS  Google Scholar 

  28. T. Fujikawa, J. Phys. Soc. Jpn. 50, 1321 (1981)

    Article  ADS  Google Scholar 

  29. M. Shang, M. Nagaosa, S. Nagamatsu, S. Hosoumi, S. Kera, T. Fujikawa, N. Ueno, J. Electron Spect. Relat. Phenom. 184, 261 (2011)

    Article  Google Scholar 

  30. A. Sekiyama, S. Suga, Physica B 312–313, 634 (2002)

    Article  Google Scholar 

  31. A. Sekiyama, S. Suga, J. Electron Spect. Relat. Phenom. 137–140, 681 (2004)

    Article  Google Scholar 

  32. M.O. Krause, Phys. Rev. 177, 151 (1969)

    Article  ADS  Google Scholar 

  33. O. Hemmers, R. Guillemin, D.W. Lindle, Rad. Phys. Chem. 70, 123 (2004)

    Article  ADS  Google Scholar 

  34. J.W. Cooper, Phys. Rev. A 47, 184 (1993)

    Article  ADS  Google Scholar 

  35. T. Fujikawa, R. Suzuki, H. Arai, H. Shinotsuka, L. Kövér, J. Electron Spect. Relat. Phenom. 159, 14 (2007)

    Article  Google Scholar 

  36. U. Gelius, K. Siegbahn, J. Chem. Soc. Faraday Discussion 54, 257 (1972)

    Article  Google Scholar 

  37. R. Suzuki, H. Arai, H. Shinotsuka, T. Fujikawa, e-J. Surf. Sci. Nanotech. 3, 373 (2005)

    Google Scholar 

  38. T. Fujikawa, R. Suzuki, L. Kövér, J. Electron Spect. Relat. Phenom. 151, 170 (2006)

    Article  Google Scholar 

  39. T. Fujikawa, H. Arai, R. Suzuki, H. Shinotsuka, L. Kövér, N. Ueno, J. Electron Spect. Relat. Phenom. 162, 146 (2008)

    Article  Google Scholar 

  40. S. Suga, S. Itoda, A. Sekiyama, H. Fujiwara, S. Komori, S. Imada, M. Yabashi, K. Tamasaka, A. Higashiyama, T. Ishikawa, M. Shang, T. Fujikawa, Phys. Rev. B86, 035146 (2012)

    Article  ADS  Google Scholar 

  41. M. Shang, T. Fujikawa, N. Ueno, e-J. Surf. Sci. Nanotech. 10, 128 (2012)

    Google Scholar 

  42. M. Shang, T. Fujikawa, N. Ueno, Anal. Chem. 85, 3739 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Fujikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Fujikawa, T., Niki, K. (2015). Theory of Photoelectron Spectroscopy. In: Ishii, H., Kudo, K., Nakayama, T., Ueno, N. (eds) Electronic Processes in Organic Electronics. Springer Series in Materials Science, vol 209. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55206-2_13

Download citation

Publish with us

Policies and ethics